Name: \qquad
Directions: Show all work. No credit for answers without work.

1. Consider the IVP $y^{\prime}=2 y+1$ with $y(0)=-1$.
(a) [3 points] Use Euler's Method with step size $h=1 / 2$ to approximate the solution at $t=1 / 2, t=1$, and $t=3 / 2$.
(b) [2 points] Extend Euler's Method in a natural way to approximate the solution at $t=-1 / 2$.
(c) [1 point] Are the approximations found in parts (a) and (b) larger than, smaller than, or equal to the corresponding true values $y(-1 / 2), y(1 / 2), y(1), y(3 / 2)$? (Your answer may vary from approximation to approximation.)
2. [2 parts, 1 point each] Convert the following complex numbers into Cartesian form $a+b i$.

$$
\text { (a) } \frac{3+i}{-2+5 i}
$$

(b) $e^{(\pi+i)(\pi / 2+i)}$
3. [2 parts, 1 point each] Convert the following complex numbers into polar form $r e^{i \theta}$.
(a) $3 i$
(b) $\sqrt{3}+i$

