Short Answer [50 points]

Directions: Solve 2 of the following 4 problems. Include the work that supports your answers.

1. Let G_{n} be the graph whose vertex set is $\left\{(x, y) \in \mathbb{Z}^{2}: 1 \leq x, y \leq n\right\}$ with (x, y) adjacent to $\left(x^{\prime}, y^{\prime}\right)$ if and only if ($x<x^{\prime}$ and $y<y^{\prime}$) or ($x>x^{\prime}$ and $y>y^{\prime}$).
(a) Draw G_{1}, G_{2}, and G_{3}.
(b) Determine the maximum size of a clique in G_{n}.

Note: a complete answer to part (b) includes both a lower and an upper bound.
2. Show that the 3-dimensional cube Q_{3} is isomorphic to the graph F obtained from $K_{4,4}$ by deleting 4 edges with distinct endpoints. (Hint: what are the 3 -regular bipartite graphs on 8 vertices?)

3. For each $n \geq 3$, construct an n-vertex graph with $3(n-2)$ edges in which every pair of cycles contains a common vertex.
4. Either find a decomposition of Q_{3} into copies of the 4 -vertex path P_{4} or show that no such decomposition exists.

Deeper Questions [50 points]

Directions: Solve 2 of the following 4 problems.

1. A graph G is splittable if G has a spanning subgraph H such that $d_{H}(v)=d_{G}(v) / 2$ for each vertex v. Prove that a connected graph G is splittable if and only if all vertices in G have even degree and G has an even number of edges.
2. Let $n \geq 2$. Prove that if G is an n-vertex graph in which every pair of cycles shares a common vertex, then $|E(G)| \leq 3(n-2)+1$.
Comment: compare with the construction in Short Answer \#3.
3. Let d be a graphic sequence, where $d=\left(d_{1}, \ldots, d_{n}\right)$ and $n \geq 2$. Prove that there is a connected graph that realizes d if and only if $\sum_{i=1}^{n} d_{i} \geq 2(n-1)$ and each d_{i} is positive.
4. Let T be a strongly connected n-vertex tournament. Prove that T contains a directed k-cycle for each k with $3 \leq k \leq n$.
