Directions: Solve 5 of the following 6 problems. All written work must be your own, using only permitted sources. See the "General Guidelines and Advice" on the homework page for more details.

1. Let $x$ and $y$ be vertices in a 3 -connected graph $G$. Show that there is an induced $x y$-path $P$ such that $G-V(P)$ is connected.
2. Let $G$ be a $2 k$-edge-connected graph with at most two vertices of odd degree. Prove that $G$ has a $k$-edge-connected orientation. (Recall that a digraph $D$ is $k$-edge-connected if $|[S, \bar{S}]| \geq k$ when $S$ is a nonempty proper subset of $V(D)$. Here, the directed cut $[S, \bar{S}]$ is the set of all edges from vertices in $S$ to vertices outside $S$.)
3. Minimally $k$-edge-connected graphs.
(a) For $S \subseteq V(G)$, let $d(S)=|[S, \bar{S}]|$. Let $X$ and $Y$ be nonempty proper vertex subsets of $G$. Prove that $d(X \cap Y)+d(X \cup Y) \leq d(X)+d(Y)$. Hint: the sets $X \cap Y, X-Y$, $Y-X$, and $\bar{X} \cap \bar{Y}$ partition $V(G)$. Draw a picture in which $V(G)$ is organized by this partition and consider contributions from various types of edges.
(b) A $k$-edge-connected graph $G$ is minimally $k$-edge-connected if, for each edge $e$ in $G$, the graph $G-e$ is not $k$-edge-connected. Prove that $\delta(G)=k$ when $G$ is minimally $k$-edgeconnected. Hint: Consider a minimal set $S$ such that $|[S, \bar{S}]|=k$. If $|S| \neq 1$, then use $G-e$ for some $e \in E(G[S])$ to obtain another set $T$ with $|[T, \bar{T}]|=k$ such that $S, T$ contradict part (a).
4. Use network flows to prove Menger's Theorem for edge-disjoint paths in graphs: $\kappa^{\prime}(x, y)=$ $\lambda^{\prime}(x, y)$. (Recall that $\kappa^{\prime}(x, y)$ is the minimum size of a set of edges $S$ such that $G-S$ has no $x y$-path, and $\lambda^{\prime}(x, y)$ is the maximum size of a set of edge-disjoint $x y$-paths.)
5. Let $G$ be a graph whose odd cycles are pairwise intersecting, meaning that every two odd cycles in $G$ have a common vertex. Prove that $\chi(G) \leq 5$.
6. Let $G$ be a graph with no induced copy of $P_{4}$, let $k=\omega(G)$, and let $\sigma$ be an ordering of $V(G)$. Prove that with respect to $\sigma$, the greedy algorithm produces a proper $k$-coloring of $G$. Hint: show that if a vertex $u$ receives color $j$, then $u$ completes a $j$-clique with vertices that precede $u$ in $\sigma$.
