Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

- 1. Let p be an odd prime. Determine the number of mutually incongruent solutions to $x^2+y^2\equiv 0\pmod p$. (A solution (x,y) is congruent to (x',y') if $(x,y)\equiv (x',y')\pmod p$. When p=3, there is 1 solution (0,0), and when p=5, there are 9 solutions.)
- 2. Infinitely many primes congruent to 7 modulo 8.
 - (a) Prove that if n is an integer and p is an odd prime dividing $n^2 2$, then $p \equiv \pm 1 \pmod{8}$.
 - (b) Prove that there are infinitely many primes p such that $p \equiv 7 \pmod{8}$.
- 3. Sums of three squares.
 - (a) [NT 11-2.9] Show that no integer of the form $4^a(8m+7)$ is the sum of three squares. Hint: consider the congruence $x^2 + y^2 + z^2 \equiv 7 \pmod{8}$.
 - (b) Prove or disprove: if x and y are representable as the sum of three squares, then so is xy.
 - (c) Prove that if x is representable as the sum of three positive squares, then so is x^2 .
- 4. Partition Exercises.
 - (a) Find the conjugate partition to 16 = 5 + 4 + 4 + 2 + 1.
 - (b) [NT 12-3.1] For the case n = 8, list the corresponding pairs of partitions of n in which all parts are odd and partitions of n into distinct parts given by Theorem 12-3.
- 5. Let P(q) be the generating function for the partition numbers. That is, $P(q) = \sum_{n \geq 0} p(n)q^n$ by definition, and $P(q) = \prod_{j \geq 1} \frac{1}{1-x^j}$ for |q| < 1 by Theorem 13–3.
 - (a) Let $a_k(n)$ be the number of partitions of n in which each part is used less than k times, and let $A_k(q)$ be the generating function $A_k(q) = \sum_{n\geq 0} a_k(n)q^n$. Show that $A_k(q) = \frac{P(q)}{P(q^k)}$ for |q| < 1.
 - (b) Let $b_k(n)$ be the number of partitions of n in which no part is divisible by k, and let $B_k(q)$ be the generating function $B_k(q) = \sum_{n \geq 0} b_k(n) q^n$. Show that $B_k(q) = \frac{P(q)}{P(q^k)}$ for |q| < 1.

Note: Since $A_k(q) = B_k(q)$, it follows that $a_k(n) = b_k(n)$ for all n.

6. [Challenge] Prove or disprove: there are infinitely many integer pairs (a, b) such that

$$2a^2 - b^2 = 1$$
.

7. [Challenge] The Fibonacci sequence is defined by $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Prove that for each positive integer m, there are infinitely many Fibonacci numbers that are divisible by m.