Directions: Solve 5 of the following 6 problems. All written work must be your own, using only permitted sources. See the "General Guidelines and Advice" on the homework page for more details.

- 1. Let G be a graph with no induced copy of P_4 , let $k = \omega(G)$, and let σ be an ordering of V(G). Prove that with respect to σ , the greedy algorithm produces a proper k-coloring of G. Hint: show that if a vertex u receives color j, then u completes a j-clique with vertices that precede u in σ .
- 2. Prove that a graph G is m-colorable if and only if $\alpha(G \square K_m) \geq |V(G)|$.
- 3. Looseness of $\chi(G) \geq |V(G)|/\alpha(G)$. Let G be an n-vertex graph.
 - (a) Prove that $\chi(G) + \chi(\overline{G}) \le n + 1$. Hint: use induction on n.
 - (b) Let $c = (n+1)/\alpha(G)$. Prove that $\chi(G) \cdot \chi(\overline{G}) \le (n+1)^2/4$, and use this to prove that $\chi(G) \le c(n+1)/4$.
 - (c) For each odd n, construct a graph G such that $\chi(G) = c(n+1)/4$.
- 4. Let G be a k-colorable graph, and let P be a set of vertices in G such that $dist(x, y) \ge 4$ whenever $x, y \in P$. Prove that every coloring of P with colors from [k+1] extends to a proper (k+1)-coloring of G.
- 5. Prove that if G has no induced $2K_2$, then $\chi(G) \leq {\binom{\omega(G)+1}{2}}$. (Hint: use a maximum clique to define a collection of ${\binom{\omega(G)}{2}} + \omega(G)$ independent sets that cover the vertices.)
- 6. Let G be a k-chromatic graph with girth 6 and order n. Construct G' as follows. Let T be an independent set of kn vertices. Take $\binom{kn}{n}$ pairwise disjoint copies of G, one for each way to choose an n-set $S \subset T$. Add a matching between each copy of G and its corresponding *n*-set S. Prove that the resulting graph has chromatic number k + 1 and girth 6. (Comment: Since C_6 has chromatic number 2 and girth 6, the process can start and these graphs exist.)