Directions: Solve 5 of the following 6 problems. All written work must be your own, using only permitted sources. See the "General Guidelines and Advice" on the homework page for more details.

1. A doubly stochastic matrix Q is a nonnegative real matrix in which every row and every column sums to 1. Prove that a doubly stochastic matrix Q can be expressed as $Q=c_{1} P_{1}+\cdots+c_{m} P_{m}$ where c_{1}, \ldots, c_{m} are nonnegative real numbers summing to 1 and P_{1}, \ldots, P_{m} are permutation matrices. For example,

$$
\left(\begin{array}{ccc}
1 / 2 & 1 / 3 & 1 / 6 \\
0 & 1 / 6 & 5 / 6 \\
1 / 2 & 1 / 2 & 0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+\frac{1}{6}\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)+\frac{1}{3}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Hint: Use induction on the number of nonzero entries in Q.
2. Determine the maximum number of edges in a bipartite graph that contains no matching with k edges and no star with l edges. (Your answer should provide a construction and prove it is best possible.)
3. For even n at least 4, determine the maximum number of edges in a connected n-vertex graph that does not have a perfect matching. (Your answer should provide a construction and prove it is best possible.)
4. For $k>0$, let G be a k-regular graph of even order that remains connected whenever $k-2$ edges are deleted. Prove that G has a 1 -factor.
5. Prove that a 3 -regular graph has a 1 -factor if and only if it decomposes into copies of P_{4}.
6. Connectivity and perfect matchings.
(a) Let G be an r-connected graph of even order having no $K_{1, r+1}$ as an induced subgraph. Prove that G has a 1-factor.
(b) For each r, construct an r-connected graph of even order that does not contain an induced copy of $K_{1, r+3}$ and has no 1-factor.
(Comment: this leaves unresolved whether every r-connected graph of even order without an induced copy of $K_{1, r+2}$ has a 1 -factor. Note: when the number of vertices is even, the inclusion bigraph between $(r-1)$-sets and r-sets in $[2 r]$ is a candidate for a sharpness example. This graph has no induced K_{r+2} and no perfect matching. Probably it is r-connected.)

