Directions: Solve 6 of the following 7 problems. All written work must be your own, using only permitted sources. See the "General Guidelines and Advice" on the homework page for more details.

1. [IGT 1.2.\{17,27\}]
(a) Let G_{n} be the graph whose vertices are the permutations of $\{1, \ldots, n\}$ with two permutations adjacent if they differ by interchanging a pair of adjacent entries. Note that $G_{3}=C_{6}$. Prove that G_{n} is connected.
(b) Let H_{n} be the graph whose vertices are the permutations of $\{1, \ldots, n\}$ with two permutations adjacent if they differ by interchanging a pair of entries (which may or may not be adjacent). Note that $G_{3}=K_{3,3}$ and G_{n} is a subgraph of H_{n}. Prove that H_{n} is bipartite. Hint: for each permutation $a_{1} \cdots a_{n}$, count the pairs (i, j) with $i<j$ and $a_{i}>a_{j}$; these are called inversions.
2. [IGT 1.2. $\{29,42\}]$
(a) Let G be a connected graph not having P_{4} or C_{3} as an induced subgraph. Prove that G is a biclique.
(b) Let G be a connected graph not having P_{4} or C_{4} as an induced subgraph. Prove that G has a vertex adjacent to all other vertices. (Hint: consider a vertex of maximum degree.)
3. [IGT 1.2.38] Prove that every n-vertex multigraph with at least n edges contains a cycle.
4. [IGT 1.2.40] Let P and Q be paths of maximum length in a connected graph G. Prove that P and Q have a common vertex.
5. A dominating vertex in a graph is adjacent to every other vertex. Let G be a graph with no isolated vertices. Prove that $V(G)$ can be partitioned into sets of size at least two such that the subgraph induced by each set has a dominating vertex.
6. [IGT 1.3.\{12,18\}]
(a) Prove that an even graph has no cut-edge. For each $k \geq 1$, construct a $(2 k+1)$-regular graph having a cut-edge.
(b) For $k \geq 2$, prove that a k-regular bipartite graph has no cut-edge.
7. [IGT 1.3.20] Count the cycles of length n in K_{n} and the cycles of length $2 n$ in $K_{n, n}$.
