Directions: Solve 5 of the following 6 problems. All written work must be your own, using only permitted sources. See the "General Guidelines and Advice" on the homework page for more details.

1. [IGT 1.1.10] Prove or disprove: the complement of a disconnected graph is connected.
2. Find a P_{6}-decomposition of the Petersen graph or show that no such decomposition exists.
3. [IGT 1.1.14] Prove that removing opposite corner squares from an 8 -by- 8 checkerboard leaves a subboard that cannot be partitioned into 1-by-2 and 2-by-1 rectangles. Hint: use a bipartite graph to model the problem.
4. [IGT 1.1.26] Let G be a graph with girth 4 in which every vertex has degree k. Prove that G has at least $2 k$ vertices. Determine all such graphs with exactly $2 k$ vertices.
5. [IGT 1.1.31] Prove that a self-complementary graph with n vertices exists if and only if $n=4 k$ or $n=4 k+1$ for some integer k. Hint: When n is divisible by 4 , generalize the structure of P_{4} by splitting the vertices into four groups. For n of the form $n=4 k+1$, add one vertex to the graph constructed for $n=4 k$.
6. [IGT 1.1.38] Let G be a simple graph in which every vertex has degree 3. Prove that G decomposes into claws if and only if G is bipartite.
