Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

- 1. [NT 9-3.3] Prove that if a and c are positive, odd, and relatively prime, then $\left(\frac{a}{c}\right) = \left(\frac{c}{a}\right)$ unless $a \equiv c \equiv 3 \pmod{4}$, in which case $\left(\frac{a}{c}\right) = -\left(\frac{c}{a}\right)$. Note: here, $\left(\frac{a}{c}\right)$ and $\left(\frac{c}{a}\right)$ are Jacobi symbols.
- 2. [NT 9-3.6] Let *m* be an odd, positive integer. Is it possible that the Jacobi symbol $\left(\frac{n}{m}\right)$ satisfies $\left(\frac{n}{m}\right) = 1$ but $x^2 \equiv n \pmod{m}$ has no solution? Prove your answer.
- 3. [NT 9-4] Determine (with proof) whether the following congruences have solutions.
 - (a) $x^2 \equiv 17 \pmod{29}$
 - (b) $3x^2 \equiv 12 \pmod{23}$
 - (c) $2x^2 \equiv 27 \pmod{41}$
 - (d) $x^2 + 5x \equiv 12 \pmod{31}$ *Hint:* complete the square.
 - (e) $x^2 \equiv 19 \pmod{30}$
- 4. Let p be a prime.
 - (a) Let a be an integer such that $p \nmid a$, and let h be the order of a. Show that if $a \not\equiv 1 \pmod{p}$, then $1 + a + a^2 + \cdots + a^{h-1} \equiv 0 \pmod{p}$.
 - (b) Let $Q = \{a \colon 1 \le a \le p 1 \text{ and } a \text{ is a quadratic residue}\}$. Prove that if $p \ge 5$, then $\sum_{t \in Q} t \equiv 0 \pmod{p}$.
- 5. Let *m* and *n* be positive integers. Prove that $gcd(2^m-1, 2^n-1) = 2^d-1$, where d = gcd(m, n). *Comment*: except for $n \in \{1, 6\}$, there is a prime that divides $2^n - 1$ but divides no integer in $\{2^m - 1: 1 \le m < n\}$. Can you find a way to prove this? It may be hard.
- 6. [Challenge] Let p be a prime and let $R = \{a \colon 1 \le a \le p-1 \text{ and } a \text{ is a primitive root}\}$. Prove that $\sum_{t \in R} t \equiv \mu(p-1) \pmod{p}$, where $\mu(n)$ is the Möbius function.