Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. [NT 9-3.3] Prove that if a and c are positive, odd, and relatively prime, then $\left(\frac{a}{c}\right)=\left(\frac{c}{a}\right)$ unless $a \equiv c \equiv 3(\bmod 4)$, in which case $\left(\frac{a}{c}\right)=-\left(\frac{c}{a}\right)$. Note: here, $\left(\frac{a}{c}\right)$ and $\left(\frac{c}{a}\right)$ are Jacobi symbols.
2. [NT 9-3.6] Let m be an odd, positive integer. Is it possible that the Jacobi symbol $\left(\frac{n}{m}\right)$ satisfies $\left(\frac{n}{m}\right)=1$ but $x^{2} \equiv n(\bmod m)$ has no solution? Prove your answer.
3. [NT 9-4] Determine (with proof) whether the following congruences have solutions.
(a) $x^{2} \equiv 17(\bmod 29)$
(b) $3 x^{2} \equiv 12(\bmod 23)$
(c) $2 x^{2} \equiv 27(\bmod 41)$
(d) $x^{2}+5 x \equiv 12(\bmod 31)$ Hint: complete the square.
(e) $x^{2} \equiv 19(\bmod 30)$
4. Let p be a prime.
(a) Let a be an integer such that $p \nmid a$, and let h be the order of a. Show that if $a \not \equiv 1$ $(\bmod p)$, then $1+a+a^{2}+\cdots+a^{h-1} \equiv 0(\bmod p)$.
(b) Let $Q=\{a: 1 \leq a \leq p-1$ and a is a quadratic residue $\}$. Prove that if $p \geq 5$, then $\sum_{t \in Q} t \equiv 0(\bmod p)$.
5. Let m and n be positive integers. Prove that $\operatorname{gcd}\left(2^{m}-1,2^{n}-1\right)=2^{d}-1$, where $d=\operatorname{gcd}(m, n)$. Comment: except for $n \in\{1,6\}$, there is a prime that divides $2^{n}-1$ but divides no integer in $\left\{2^{m}-1: 1 \leq m<n\right\}$. Can you find a way to prove this? It may be hard.
6. [Challenge] Let p be a prime and let $R=\{a: 1 \leq a \leq p-1$ and a is a primitive root $\}$. Prove that $\sum_{t \in R} t \equiv \mu(p-1)(\bmod p)$, where $\mu(n)$ is the Möbius function.
