Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. Let $(f(n), g(n))$ be a Möbius pair. In class, we showed that if $f(n)$ is multiplicative, then $g(n)$ is multiplicative. Prove that if $g(n)$ is multiplicative, then $f(n)$ is multiplicative. Comment: of course, the proof is in the text. Try to do this problem without using the text, using the converse direction as a model.
2. Let M be the set of all positive integers m such that $a^{\phi(m)+1} \equiv a(\bmod m)$ for each integer a. Give a simple characterization of M and prove that your characterization is correct.
3. [NT 5-2. $\{9,10\}$]
(a) Prove that if p is a prime and $p \equiv 1(\bmod 4)$, then $\left[\left(\frac{p-1}{2}\right)!\right]^{2} \equiv-1(\bmod p)$.
(b) Use the above to find a solution for each of the following.
i. $x^{2} \equiv-1(\bmod 13)$
ii. $x^{2} \equiv-1(\bmod 17)$
4. [NT 6-4.2] Prove that if $f(n)$ is multiplicative, then $\sum_{d \mid n} \mu(d) f(d)=\prod_{p \mid n}(1-f(p))$.
5. Primitive Roots I.
(a) [NT 7-1.1] Find all primitive roots modulo 5, modulo 9, modulo 11, modulo 13, and modulo 15.
(b) Let a and m be positive, relatively prime integers. Let S be the set of primes dividing $\phi(m)$. Prove that if $a^{\phi(m) / p} \not \equiv 1(\bmod m)$ for each $p \in S$, then a is a primitive root of m.
6. Primitive Roots II. Let x and y be relatively prime integers.
(a) Prove that if g is a primitive root modulo $x y$, then g is a primitive root modulo x and a primitive root modulo y.
(b) Let h_{x} be the order of a modulo x and let h_{y} be the order of a modulo y. In terms of h_{x} and h_{y}, find (with proof of correctness) a formula for the order of a modulo $x y$.
(c) Use parts (a) and (b) to show that if m is divisible by two distinct odd primes, then there are no primitive roots modulo m.
7. [NT 8-1.4] Modify the proof of Theorem 8-1 to prove that there exist infinitely many primes congruent to $5(\bmod 6)$.
8. [Challenge] Prove that if n divides $3^{n}-1$, then $n=1$ or n is even.
9. [Challenge] The Fibonacci sequence is defined by $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. Prove that for each positive integer m, there are infinitely many Fibonacci numbers that are divisible by m.
