Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. [NT 3-3.1] Prove that p is the smallest prime that divides $(p-1)!+1$.
2. Let $f(n)$ be the number of representations of n as the sum of square numbers. For example, since $25=0^{2}+5^{2}$ and $25=3^{2}+4^{2}$, it follows that $f(25) \geq 2$. In fact, $f(25)=2$ and 25 is the least integer n such that $f(n) \geq 2$. Similarly, $f(12)=0$ since there is no way to write 12 as the sum of two squares. On the other hand, $f(18)=1$ because the only way to express 18 as the sum of two squares is $18=3^{2}+3^{2}$.
(a) Determine the least integer n such that $f(n) \geq 3$. What are the representations of n ?
(b) Determine the least integer n such that $f(n) \geq 20$. What are the representations of n ? [Hint: Using an algorithm computes $f(n)$ in a loop starting with $n=1$ and working upward will probably be too slow. To be more efficient, try computing all the values $f(1), f(2), \ldots, f(n)$ all at once for a trial value of n. If we find any numbers with 20 distinct representations, we're done: just grab the smallest. Otherwise, double n and try again.]
3. [NT 5-2.4] Let $k=\phi(m)$. Prove that if r_{1}, \ldots, r_{k} is a reduced residue system modulo m and m is odd, then $r_{1}+r_{2}+\cdots+r_{k} \equiv 0(\bmod m)$.
4. [NT 5-3.4]
(a) Prove that for each n, there are n consecutive integers, each of which is divisible by a perfect square larger than 1 .
(b) Using your proof above, explicitly find 3 consecutive integers, each of which is divisible by a perfect square larger than 1 . In your answer, give the integers as well as the corresponding perfect squares.
5. [NT 5-4.1] Find the set of solutions to the following system of congruences:

$$
\begin{array}{ll}
2 x \equiv 1 & (\bmod 5) \\
3 x \equiv 9 & (\bmod 6) \\
4 x \equiv 1 & (\bmod 7) \\
5 x \equiv 9 & (\bmod 11)
\end{array}
$$

6. Let $A=\left\{a^{2}-b^{2}: a, b \in \mathbb{Z}\right\}$. Give a simple characterization of A (with proof of correctness).
7. [Challenge] Let $m=2^{r} 3^{s}$ where r and s are positive integers. Prove that $m \mid a^{m}-1$ if and only if $\operatorname{gcd}(a, m)=1$.
8. [Challenge] Prove that if $n \geq 2$, then the sum $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ is not an integer.
