Directions: Solve the following problems; computer problems (marked with a \square icon) and challenge problems are optional. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

- 1. [NT 2-2.4] The *least common multiple* of a and b, denoted lcm(a, b), is the smallest positive integer ℓ such that $a \mid \ell$ and $b \mid \ell$. Prove that if a and b are positive integers, then lcm(a, b) = ab/gcd(a, b).
- 2. [NT 2-3.1] Find the general solution (if solutions exist) of each of the following linear Diophantine equations:
 - (a) 15x + 51y = 41
 - (b) 23x + 29y = 25
 - (c) 121x 88y = 572
- 3. Binomial Coefficients and Parity I.
 - (a) [NT 3-1.3] Using the definition of $\binom{n}{r}$, show combinatorially that $\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$.
 - (b) Prove that if n is even and r is odd, then $\binom{n}{r}$ is even.
- 4. Binomial Coefficients and Parity II. Pascal's Triangle is an arrangement of the binomial coefficients in which $\binom{n}{k}$ is placed at position k in row n. For example, the rows n = 0 through n = 6 of Pascal's Triangle are shown on the left:

						1								1	1	1	1	1	1	1
					1		1							1	2	3	4	5	6	
				1		2		1						1	3	6	10	15		
			1		3		3		1					1	4	10	20			
		1		4		6		4		1				1	5	15				
	1		5		10		10		5		1			1	6					
1		6		15		20		15		6		1		1						

For the computer problem, it is convenient to rotate Pascal's Triangle so that $\binom{x+y}{x}$ appears in position (x, y), as shown to the right. Write a program whose output is a (30×30) -array of characters with an asterisk in position (x, y) if $\binom{x+y}{x}$ is even and a blank space otherwise. How does the grid look?

- 5. Binomial Coefficients and Parity III. A positive integer n is excellent if the set $\{\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}\}$ contains only odd integers.
 - (a) Which numbers are excellent? Based on examining data, formulate a hypothesis.
 - (b) [Harder Challenge] Prove that your hypothesis is correct. Hint: determine the maximum integer t such that 2^t divides n!.
- 6. [NT 3-2.3] Prove that n^5 and n have the same last digit.
- 7. Prove that if a and b are positive integers, then it is not possible for both $a + b^2$ and $a^2 + b$ to be square numbers (i.e. of the form k^2 for some integer k). Hint: after a^2 , what is the next largest square?
- 8. [Easier Challenge] Prove that if n is an integer and $n \ge 2$, then $n^4 + 4^n$ is not prime.