Directions: Solve the following problems; computer problems (marked with a 回 icon) and challenge problems are optional. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. [NT 2-2.4] The least common multiple of a and b, denoted $\operatorname{lcm}(a, b)$, is the smallest positive integer ℓ such that $a \mid \ell$ and $b \mid \ell$. Prove that if a and b are positive integers, then $\operatorname{lcm}(a, b)=$ $a b / \operatorname{gcd}(a, b)$.
2. [NT 2-3.1] Find the general solution (if solutions exist) of each of the following linear Diophantine equations:
(a) $15 x+51 y=41$
(b) $23 x+29 y=25$
(c) $121 x-88 y=572$
3. Binomial Coefficients and Parity I.
(a) [NT 3-1.3] Using the definition of $\binom{n}{r}$, show combinatorially that $\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}$.
(b) Prove that if n is even and r is odd, then $\binom{n}{r}$ is even.
4. Binomial Coefficients and Parity II. Pascal's Triangle is an arrangement of the binomial coefficients in which $\binom{n}{k}$ is placed at position k in row n. For example, the rows $n=0$ through $n=6$ of Pascal's Triangle are shown on the left:

For the computer problem, it is convenient to rotate Pascal's Triangle so that $\binom{x+y}{x}$ appears in position (x, y), as shown to the right. Write a program whose output is a (30×30)-array of characters with an asterisk in position (x, y) if $\binom{x+y}{x}$ is even and a blank space otherwise. How does the grid look?
5. Binomial Coefficients and Parity III. A positive integer n is excellent if the set $\left\{\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}\right\}$ contains only odd integers.
(a) Which numbers are excellent? Based on examining data, formulate a hypothesis.
(b) [Harder Challenge] Prove that your hypothesis is correct. Hint: determine the maximum integer t such that 2^{t} divides $n!$.
6. [NT 3-2.3] Prove that n^{5} and n have the same last digit.
7. Prove that if a and b are positive integers, then it is not possible for both $a+b^{2}$ and $a^{2}+b$ to be square numbers (i.e. of the form k^{2} for some integer k). Hint: after a^{2}, what is the next largest square?
8. [Easier Challenge] Prove that if n is an integer and $n \geq 2$, then $n^{4}+4^{n}$ is not prime.

