Directions: Solve the following problems. Your solutions should be electronically typeset and all written work should be your own.

1. [NT 1-1.5] Prove that $1+3+5+\cdots+2 n-1=n^{2}$.
2. [NT 1-1.1] Prove that $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
3. Divisibility.
(a) Prove that if a and n are integers with $a \geq 3$ and $n \geq 2$, then $a^{n}-1$ is not prime.
(b) Prove that if $2^{n}-1$ is prime, then n is prime.
4. Give the base 7 representation for 39201 .
5. [NT 1-2.\{4,5\}]
(a) Find integers c_{0}, \ldots, c_{s} with each $c_{s} \in\{-1,0,1\}$ such that

$$
40189=c_{0}+c_{1} \cdot 3+c_{2} \cdot 3^{2}+\cdots+c_{s} 3^{s}
$$

(b) Prove that each nonzero integer has a unique representation of the form $c_{0}+c_{1} \cdot 3+c_{2}$. $3^{2}+\cdots+c_{s} 3^{s}$ with each $c_{j} \in\{-1,0,1\}$ and $c_{s} \neq 0$.
6. Let $d=\operatorname{gcd}(15708,1870)$. Find d and obtain integers p and q such that $d=15708 p+1870 q$.
7. [Challenge] Let $A_{n}=\{(x, y): 1 \leq x \leq n, 1 \leq y \leq n$, and $\operatorname{gcd}(x, y)=1\}$. Note that A_{n} contains all points (x, y) in the $(n \times n)$-grid with corners $(1,1)$ and (n, n) such that the line segment joining $(0,0)$ and (x, y) contains no other integer lattice points. The first few such sets are as follows:

$$
\begin{aligned}
& A_{1}=\{(1,1)\} \\
& A_{2}=\{(1,1),(2,1),(1,2)\} \\
& A_{3}=\{(1,1),(1,2),(1,3),(2,3),(2,1),(3,1),(3,2)\}
\end{aligned}
$$

Let $f(n)=\left|A_{n}\right|$. Note that $f(1)=1, f(2)=3, f(3)=7$, and $f(4)=11$. Prove that there is a positive constant C such that $f(n) \geq C n^{2}$.

