Name: \qquad
Directions: Show all work. Answers without work generally do not earn points.

1. [10 points] Let $\Sigma=\{a, b\}$. Construct a simple NFA for the language $\{w \mid w$ ends with $a a a$ or $b b b\}$.
2. [3 parts, $\mathbf{2}$ points each] Let $\Sigma=\{a, b\}$. Let

$$
\begin{aligned}
& A=\left\{w \mid w \text { has at least as many } a^{\prime} \text { 's as } b \text { 's }\right\} \\
& B=\left\{w \mid w \text { has at least as many } b \text { 's as } a^{\prime} s\right\} .
\end{aligned}
$$

For each language below, give a DFA if the language is regular or write "not regular" if the language is not regular.
(a) A
(b) B
(c) $A B$
3. Let $\Sigma=\{a, b\}$ and let N be the following NFA.

(a) [10 points] Convert N to an equivalent DFA.
(b) [2 points] What is the shortest word that is not accepted by N ?
(c) [2 points] Give a simple, English description of $L(N)$.
4. [5 points] Let N be an NFA that recognizes a language A. Describe how to use N to make a new NFA or DFA which recognizes the complement language $\{w \mid w \notin A\}$.
5. [2 parts, $\mathbf{5}$ points each] Let $\Sigma=\{a, b\}$, and let $A=\{w \mid w$ has an odd number of a 's $\}$.
(a) Give an NFA for the language $A A$.
(b) Convert the NFA to a DFA and simplify.
6. [2 parts, $\mathbf{8}$ points each] Let $\Sigma=\{a, b\}$, and let $A=\{w \mid$ the length of w is not a multiple of 3$\}$, and let $B=\{w \mid w$ has an odd number of b 's $\}$.
(a) Give an NFA for the language $A B$.
(b) Convert the NFA to a DFA and simplify.
7. [5 points] Draw a 5-vertex graph (without loops and without parallel edges) in which one vertex has degree 4 , one vertex has degree 3 , two vertices have degree 2 , and one vertex has degree 1.
8. [5 points] Give a simple argument that there is no 15 -vertex graph (without loops and without parallel edges) in which two vertices have degree 14 and one vertex has degree 1.
9. [5 points] Find an 8-vertex graph which contains C_{5}, C_{6}, and C_{8} as subgraphs but does not contain cycles of any other lengths.
10. For $n \geq 2$, let G_{n} be the graph whose vertices are the subsets of $\{1,2, \ldots, n\}$ of size 2 and where two vertices are adjacent if and only if they have non-empty intersection. For example, in G_{5}, the vertices $\{3,4\}$ and $\{3,5\}$ are adjacent but $\{3,4\}$ and $\{1,5\}$ are not adjacent.
(a) [6 points] Draw G_{2}, G_{3}, and G_{4}.
(b) [2 points] Give a formula for the number of vertices in G_{n}.
(c) $\left[\mathbf{2}\right.$ points] Give a formula for the degree of a vertex in the regular graph G_{n}.
(d) $\left[\mathbf{2}\right.$ points] Use parts (b) and (c) to give a formula for the number of edges in G_{n}.
11. [3 parts, 4 points each] For each pair of graphs below, decide if the graphs are isomorphic. If they are isomorphic, give a table. If not, argue why not.
(a)

(b)

(c)

