Name: \qquad
Directions: Show all work. Answers without work generally do not earn points. Unless stated otherwise, answers may be left in terms of factorials and binomial coefficients.

1. [4 points] A restaurant offers 7 different sandwiches, 5 sides, 6 soups, and 3 desserts. The lunch special consists of a sandwich, a choice of 1 side or a soup (but not both), and a dessert. How many ways are there to order the lunch special?
2. [4 points] How many ways are there to distribute 35 identical gold coins among 8 people?
3. [2 parts, 4 points each] How many 5-digit ATM pins:
(a) contain only even digits?
(b) contain at least one odd digit?
4. [3 parts, 4 points each] A game system has 4 buttons in different colors: red, green, blue, and yellow. The buttons must be pressed one at a time, in some order. To win the game, each button must be pressed twice. How many ways are there to win:
(a) with no additional restrictions?
(b) if the green presses must occur consecutively?
(c) if both red presses must occur before both blue presses?
5. [3 parts, 4 points each] Word arrangements. How many ways are there to arrange the letters of 'APPROPRIATE':
(a) with no additional restrictions.
(b) with no two consecutive P's.
(c) with all P's separated by at least 2 letters. (So PAAPROPRITE counts but PAPROPRIATE does not.
6. Poker hands. Recall that a deck of cards has 4 suits (clubs, diamonds, hearts, and spades) and 13 ranks (ace, 2 through 10, jack, queen, and king). There are 52 cards (one for each suit/rank pair). A poker hand is a set of 5 cards (order does not matter). The face cards are the cards whose rank is jack, queen, or king.
(a) [4 points] How many poker hands have no face cards?
(b) [1 point] What are the odds of being dealt a poker hand with no face cards? Round your answer to the nearest decimal percentage of the form $x x . x x \%$.
(c) [4 points] How many hands have 3 cards in one suit and 2 cards in a different suit?
(d) [4 points] How many hands have all distinct ranks and at least 1 card in each suit?
7. [5 parts, 3 points each] Count the non-negative integer solutions to $x_{1}+\cdots+x_{5}=40$:
(a) with no additional restrictions.
(b) with $x_{i} \geq 3$ for all i.
(c) with $x_{2} \leq 18$
(d) with $x_{4}=20$ and $x_{5}=10$
(e) with $x_{4}=20$ or $x_{5}=10$ (or both)
8. [3 parts, 4 points each] Find the coefficient:
(a) of $x^{4} y^{5}$ in $(x+y)^{9}$
(b) of $x^{3} y^{4} z^{5}$ in $(x+y+z)^{12}$
(c) of $x^{5} y^{5} z^{5}$ in $(2 x-y+3 z)^{15}$
9. [2 parts, 4 points each] Give simple formulas for the following sums:
(a) $\sum_{k=1}^{n} k$
(b) $\sum_{k=0}^{n}\binom{n}{k} 3^{k}$
10. [2 parts, 4 points each] Lattice Paths. Recall that a step in a lattice path increases one of the coordinates by 1 .

(a) How many lattice paths are there from $(0,0)$ to $(8,5)$?
(b) How many of these paths avoid the segment from $(3,3)$ to $(4,3)$ (depicted above with a dashed line segment)?
11. [4 points] Lattice paths in 3 dimensions. In 3 dimensions, a step in a lattice path moves from (x, y, z) to one of the following points: $(x+1, y, z),(x, y+1, z),(x, y, z+1)$. How many lattice paths are there from $(0,0,0)$ to (n, n, n) ? Hint: apply the method that allowed us to count 2-dimensional lattice paths.
