Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [2 points] Let $\Sigma=\{0,1\}$. Determine $\left|\Sigma^{5}\right|$.
2. Let $\Sigma=\{0,1\}$ and let A be the language defined recursively as follows:
(1) $\lambda \in A$.
(2) If $x \in A$, then $0 x \in A$.
(3) If $x \in A$, then $x 1 \in A$.
(a) [2 points] List all strings in A of length at most 2.
(b) [1 point] Give a simple, non-recursive description of A.
(c) [1 point] Give a formula for the number of strings in A of length n.
3. [4 parts, 1 point each] Let $\Sigma=\{0,1,2\}$. Let A be the language of all strings over Σ with an equal number of 0 's and 1 's, and let B be the language of all strings over Σ with an equal number of 1 's and 2's. For example, if $w=1202112$, then the number of occurrences of 0,1 , and 2 in w is 1,3 , and 3 respectively. Consequently $w \notin A$ and $w \in B$.
(a) Give a simple, English description of the language $A \cap B$.
(b) Determine the number of strings in $A \cap B$ of length 10 .
(c) True or false: if x and y are both in A, then $x y \in A$.
(d) Give an example of a string w over Σ that has length 2 such that $w \in A B$ and $w \notin B A$.
