Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [4 parts, 1 point each] True or False? Write the whole word. (No work necessary.)
(a) For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
(b) For all sets A and B, it is the case that $A \times B=B \times A$.
(c) For all sets A and B, it is the case that $\mathcal{P}(A \cup B)=\mathcal{P}(A) \cup \mathcal{P}(B)$.
(d) For all sets A and B, it is the case that $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$.
2. Let A be the set of all finite subsets of \mathbb{N}. (Recall $\mathbb{N}=\{0,1,2,3 \ldots\}$. For example, $\{4,8,10\} \in$ A and $\{3,6,9,12,15,18\} \in A$.)
(a) [$\mathbf{2}$ points] Show that A is countable by describing, in English sentences, a way to list the elements of A.
(b) [1 point $]$ In addition to the English description in part (a), explicitly give the first 10 elements of A in your list.
3. [$\mathbf{3}$ parts, $\mathbf{1}$ point each] Let A be the set of all subsets of $\{1,2,3, \ldots, n, n+1\}$ of size 3 .
(a) Determine $|A|$.
(b) For $k \leq n$, let B_{k} be the number of subsets of $\{1,2,3, \ldots, n, n+1\}$ of size 3 whose maximum element equals $k+1$. (For example, $\{2,3,7\} \in B_{6}$ and $\{1,4,7\} \in B_{6}$ since both sets have 7 as their maximum.) Determine $\left|B_{k}\right|$.
(c) Give a simple formula for $\sum_{k=0}^{n}\binom{k}{2}$.
