Directions: Solve 5 of the following 6 problems. All written work must be your own, using only permitted sources. See the "General Guidelines and Advice" on the homework page for more details.

1. [IGT 5.1.20] Let G be a graph whose odd cycles are pairwise intersecting, meaning that every two odd cycles in G have a common vertex. Prove that $\chi(G) \leq 5$.
2. [IGT 5.1.31] Prove that a graph G is m-colorable if and only if $\alpha\left(G \square K_{m}\right) \geq|V(G)|$.
3. [IGT 5.1. $\{41,42\}]$ Looseness of $\chi(G) \geq|V(G)| / \alpha(G)$. Let G be an n-vertex graph.
(a) Prove that $\chi(G)+\chi(\bar{G}) \leq n+1$. Hint: use induction on n.
(b) Let $c=(n+1) / \alpha(G)$. Prove that $\chi(G) \cdot \chi(\bar{G}) \leq(n+1)^{2} / 4$, and use this to prove that $\chi(G) \leq c(n+1) / 4$.
(c) For each odd n, construct a graph such that $\chi(G)=c(n+1) / 4$.
4. [IGT 5.1.51] Let G be a k-colorable graph, and let P be a set of vertices in G such that $\operatorname{dist}(x, y) \geq 4$ whenever $x, y \in P$. Prove that every coloring of P with colors from $[k+1]$ extends to a proper $(k+1)$-coloring of G.
5. [IGT 5.2.11] Prove that if G has no induced $2 K_{2}$, then $\chi(G) \leq(\underset{2}{\omega(G)+1})$. (Hint: use a maximum clique to define a collection of $\binom{\omega(G)}{2}+\omega(G)$ independent sets that cover the vertices.)
6. [IGT 5.2.13] Let G be a k-chromatic graph with girth 6 and order n. Construct G^{\prime} as follows. Let T be an independent set of $k n$ vertices. Take $\binom{k n}{n}$ pairwise disjoint copies of G, one for each way to choose an n-set $S \subset T$. Add a matching between each copy of G and its corresponding n-set S. Prove that the resulting graph has chromatic number $k+1$ and girth 6. (Comment: Since C_{6} has chromatic number 2 and girth 6 , the process can start and these graphs exist.)
