Directions: Solve 5 of the following 6 problems. All written work must be your own, using only permitted sources. See the "General Guidelines and Advice" on the homework page for more details.

1. [IGT 4.1.23] Connectivity and perfect matchings.
(a) Let G be an r-connected graph of even order having no $K_{1, r+1}$ as an induced subgraph. Prove that G has a 1 -factor.
(b) For each r, construct an r-connected graph of even order that does not contain an induced copy of $K_{1, r+3}$ and has no 1 -factor.
(Comment: this leaves unresolved whether every r-connected graph of even order without an induced copy of $K_{1, r+2}$ has a 1-factor.)
2. [IGT 4.1.25] Let G be a simple graph with diameter 2 , and let $[S, \bar{S}]$ be a minimum edge cut with $|S| \leq|\bar{S}|$.
(a) Prove that every vertex of S has a neighbor in \bar{S}.
(b) Use part (a) and Corollary 4.1 .13 (i.e. $|S|>\delta(G)$ when $|[S, \bar{S}]|<\delta(G)$ and S is a nonempty proper subset of $V(G))$ to prove that $\kappa^{\prime}(G)=\delta(G)$ when G has diameter 2 .
3. [IGT 4.2.15] Let v be a vertex of a 2 -connected graph G. Prove that v has a neighbor u such that $G-u-v$ is connected. Find a 2 -edge-connected graph G that has a vertex v such that for each neighbor u of v, the graph $G-u-v$ is disconnected.
4. [IGT 4.2.21] Let G be a $2 k$-edge-connected graph with at most two vertices of odd degree. Prove that G has a k-edge-connected orientation. (Recall that a digraph D is k -edge-connected if $|[S, \bar{S}]| \geq k$ when S is a nonempty proper subset of $V(D)$.)
5. [IGT 4.2. $\{36,37\}$] Minimally k-edge-connected graphs.
(a) For $S \subseteq V(G)$, let $d(S)=|[S, \bar{S}]|$. Let X and Y be nonempty proper vertex subsets of G. Prove that $d(X \cap Y)+d(X \cup Y) \leq d(X)+d(Y)$. Hint: the sets $X \cap Y, X-Y$, $Y-X$, and $\bar{X} \cap \bar{Y}$ partition $V(G)$. Draw a picture in which $V(G)$ is organized by this partition and consider contributions from various types of edges.
(b) A k-edge-connected graph G is minimally k-edge-connected if, for each edge e in G, the graph $G-e$ is not k-edge-connected. Prove that $\delta(G)=k$ when G is minimally k-edgeconnected. Hint: Consider a minimal set S such that $|[S, \bar{S}]|=k$. If $|S| \neq 1$, then use $G-e$ for some $e \in E(G[S])$ to obtain another set T with $|[T, \bar{T}]|=k$ such that S, T contradict part (a).
6. [IGT 4.3.6] Use network flows to prove Menger's Theorem for edge-disjoint paths in graphs: $\kappa^{\prime}(x, y)=\lambda^{\prime}(x, y)$. (Recall that $\kappa^{\prime}(x, y)$ is the minimum size of a set of edges S such that $G-S$ has no $x y$-path, and $\lambda^{\prime}(x, y)$ is the maximum size of a set of edge-disjoint $x y$-paths.)
