Directions: Solve 5 of the following 6 problems. All written work must be your own, using only permitted sources. See the "General Guidelines and Advice" on the homework page for more details.

- 1. [IGT 4.1.23] Connectivity and perfect matchings.
 - (a) Let G be an r-connected graph of even order having no $K_{1,r+1}$ as an induced subgraph. Prove that G has a 1-factor.
 - (b) For each r, construct an r-connected graph of even order that does not contain an induced copy of $K_{1,r+3}$ and has no 1-factor.

(Comment: this leaves unresolved whether every r-connected graph of even order without an induced copy of $K_{1,r+2}$ has a 1-factor.)

- 2. [IGT 4.1.25] Let G be a simple graph with diameter 2, and let $[S, \overline{S}]$ be a minimum edge cut with $|S| \leq |\overline{S}|$.
 - (a) Prove that every vertex of S has a neighbor in \overline{S} .
 - (b) Use part (a) and Corollary 4.1.13 (i.e. $|S| > \delta(G)$ when $|[S,\overline{S}]| < \delta(G)$ and S is a nonempty proper subset of V(G)) to prove that $\kappa'(G) = \delta(G)$ when G has diameter 2.
- 3. [IGT 4.2.15] Let v be a vertex of a 2-connected graph G. Prove that v has a neighbor u such that G u v is connected. Find a 2-edge-connected graph G that has a vertex v such that for each neighbor u of v, the graph G u v is disconnected.
- 4. [IGT 4.2.21] Let G be a 2k-edge-connected graph with at most two vertices of odd degree. Prove that G has a k-edge-connected orientation. (Recall that a digraph D is kedge-connected if $|[S, \overline{S}]| \ge k$ when S is a nonempty proper subset of V(D).)
- 5. $[IGT 4.2.{36,37}]$ Minimally k-edge-connected graphs.
 - (a) For $S \subseteq V(G)$, let $d(S) = |[S, \overline{S}]|$. Let X and Y be nonempty proper vertex subsets of G. Prove that $d(X \cap Y) + d(X \cup Y) \leq d(X) + d(Y)$. Hint: the sets $X \cap Y$, X Y, Y X, and $\overline{X} \cap \overline{Y}$ partition V(G). Draw a picture in which V(G) is organized by this partition and consider contributions from various types of edges.
 - (b) A k-edge-connected graph G is minimally k-edge-connected if, for each edge e in G, the graph G e is not k-edge-connected. Prove that $\delta(G) = k$ when G is minimally k-edge-connected. Hint: Consider a minimal set S such that $|[S,\overline{S}]| = k$. If $|S| \neq 1$, then use G e for some $e \in E(G[S])$ to obtain another set T with $|[T,\overline{T}]| = k$ such that S, T contradict part (a).
- 6. [IGT 4.3.6] Use network flows to prove Menger's Theorem for edge-disjoint paths in graphs: $\kappa'(x,y) = \lambda'(x,y)$. (Recall that $\kappa'(x,y)$ is the minimum size of a set of edges S such that G - S has no xy-path, and $\lambda'(x,y)$ is the maximum size of a set of edge-disjoint xy-paths.)