Directions: Solve 5 of the following 6 problems. All written work must be your own, using only permitted sources. See the "General Guidelines and Advice" on the homework page for more details.

1. [IGT 3.1.21] Let G be an (X, Y)-bigraph such that $|N(S)|>|S|$ when $\varnothing \neq S \subsetneq X$. Prove that every edge of G is contained in a matching that saturates X.
2. [IGT 3.1.25] A doubly stochastic matrix Q is a nonnegative real matrix in which every row and every column sums to 1 . Prove that a doubly stochastic matrix Q can be expressed as $Q=c_{1} P_{1}+\cdots+c_{m} P_{m}$ where c_{1}, \ldots, c_{m} are nonnegative real numbers summing to 1 and P_{1}, \ldots, P_{m} are permutation matrices. For example,

$$
\left(\begin{array}{ccc}
1 / 2 & 1 / 3 & 1 / 6 \\
0 & 1 / 6 & 5 / 6 \\
1 / 2 & 1 / 2 & 0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+\frac{1}{6}\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)+\frac{1}{3}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Hint: Use induction on the number of nonzero entries in Q.
3. [IGT 3.1.27] A positional game consists of a set X of positions x_{1}, \ldots, x_{n} and a family W_{1}, \ldots, W_{m} of winning sets of positions (Tic-Tac-Toe has nine positions and eight winning sets). Two players alternately choose positions; a player wins by collecting a winning set.
Suppose that each winning set has size at least a and each position appears in at most b winning sets (in Tic-Tac-Toe, $a=3$ and $b=4$). Prove that Player 2 can force a draw if $a \geq 2 b$. (Hint: Form an (X, Y)-bigraph G, where $Y=\left\{w_{1}, \ldots, w_{m}\right\} \cup\left\{w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right\}$, with edges $x_{i} w_{j}$ and $x_{i} w_{j}^{\prime}$ whenever $x_{i} \in W_{j}$. How can Player 2 use a matching in G ?) Comment: This result implies that Player 2 can force a draw in d-dimensional Tic-Tac-Toe.
4. [IGT 3.1.30] Determine the maximum number of edges in a bipartite graph that contains no matching with k edges and no star with l edges.
5. [IGT 3.3.16] Let G be a k-regular graph of even order that remains connected whenever $k-2$ edges are deleted. Prove that G has a 1 -factor.
6. [IGT 3.3.20] Prove that a 3-regular graph has a 1-factor if and only if it decomposes into copies of P_{4}.

