Directions: Solve 5 of the following 6 problems. All written work must be your own, using only permitted sources. See the "General Guidelines and Advice" on the homework page for more details.

1. [IGT 2.1.27] Let d_{1}, \ldots, d_{n} be positive integers with $n \geq 2$. Prove that there exists a tree with vertex degrees d_{1}, \ldots, d_{n} if and only if $\sum d_{i}=2 n-2$.
2. [IGT 2.1.41] For $n \geq 4$, let G be an n-vertex graph with at least $2 n-3$ edges. Prove that G has two cycles of equal length.
3. [IGT 2.1.63] Prove that every n-vertex graph with $n+1$ edges has girth at most $\lfloor(2 n+2) / 3\rfloor$. For each n, construct an example achieving this bound.
4. [IGT 2.1.72] Prove that if G_{1}, \ldots, G_{k} are pairwise-intersecting subtrees of a tree G, then G has a vertex that belongs to all of G_{1}, \ldots, G_{k}. Hint: use induction on k.
5. [IGT 2.2.7] Use Cayley's Formula to prove that the graph obtained from K_{n} by deleting an edge has $(n-2) n^{n-3}$ spanning trees.
6. [IGT 3.1.18] Two people play a game on a graph G, alternately choosing distinct vertices. Player 1 starts by choosing any vertex. Each subsequent choice must be adjacent to the preceding choice (of the other player). Thus together they follow a path. The last player able to move wins.
Prove that the second player has a winning strategy if G has a perfect matching, and otherwise the first player has a winning strategy. (Hint: for the second part, the first player should start with a vertex omitted by some maximum matching.)
