1. Rewrite $-2 \cos (3 t)-3 \sin (3 t)$ in the form $R \cos \left(\omega_{0} t-\delta\right)$.
2. [3.7.6] A mass of 100 g stretches a spring 5 cm . If the mass is set in motion from its equilibrium position with a downward velocity of $10 \mathrm{~cm} / \mathrm{s}$, and if there is no damping, (a) determine the position u of the mass at any time t. (b) When does the mass first return to its equilibrium position? (c) Determine the frequency, period, amplitude, and phase of the motion.
3. [3.7.11] A spring is stretched 10 cm by a force of 3 N . (Note: one Newton, denoted N , is $1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$.) A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass is $5 \mathrm{~m} / \mathrm{s}$. If the mass is pulled down 5 cm below its equilibrium position and given an initial downward velocity of $10 \mathrm{~cm} / \mathrm{s}$, (a) determine its position u at any time t. (b) Find the quasi frequency μ and the ratio of μ to the natural frequency of the corresponding undamped motion.
