1. Compute the derivatives of the following functions with respect to t. Recall the hyperbolic functions satisfy $\sinh t=\left(e^{t}-e^{-t}\right) / 2$ and $\cosh t=\left(e^{t}+e^{-t}\right) / 2$.
(a) $u=t^{2} e^{3 t}$
(b) $v=e^{\tan t}$
(c) $y=\sinh t$
(d) $y=\cosh t$
2. Solve the following integrals.
(a) $\int \frac{x}{x^{2}-4} d x$
(b) $\int \frac{1}{x^{2}-4} d x$
(c) $\int \frac{1}{x^{2}+4} d x$
3. Find $\frac{\partial y}{\partial u}$ and $\frac{\partial y}{\partial v}$ given that $y=u^{2} e^{v}+\sin (3 u+2 v)$.
4. Given that $w=e^{x y}, x=t \ln t$, and $y=e^{t}$, use the multivariable chain rule to compute $\frac{d w}{d t}$. You may leave your answer in terms of the intermediate variables x and y.
5. [1.1.22] A spherical raindrop evaporates at a rate proportional to its surface area. Write a differential equation for the volume V of the raindrop as a function of time t. (Hint: recall the formulas for volume $V=\frac{4 \pi}{3} r^{3}$ and surface area $S=4 \pi r^{2}$ of a sphere as a function of the radius r; use these to express S as a function of V.)
