Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [24 points] A mass of 1 kg stretches a spring by 5 cm . The spring/mass system is enclosed in a medium which imparts a viscous force of magnitude 24 N when the mass moves at a velocity of $2 \mathrm{~m} / \mathrm{s}$. An external motor imparts a force of $2 \cos (5 t)$ (in N). Solve for the forced response $U(t)$ in m, expressing $U(t)$ in the form $R \cos (\omega t-\delta)$. Approximate values to 5 decimal places. Hint: be careful with units.
2. [4 parts, 8 points each] Compute the following.
(a) $\mathcal{L}\{t(t+1)\}$
(c) $\mathcal{L}^{-1}\left\{\frac{6}{(s-7)^{5}}\right\}$
(b) $\mathcal{L}\left\{2 \cosh (3 t)-u_{5}(t)(t+1)\right\}$
(d) $\mathcal{L}^{-1}\left\{\frac{s^{2}}{\left(s^{2}+4\right)(s+2)}\right\}$
3. [20 points] Use the Laplace transform to solve: $y^{\prime \prime}-3 y^{\prime}-10 y=e^{t}, y(0)=0$ and $y^{\prime}(0)=1$.
4. [20 points] Solve the IVP: $y^{\prime \prime}+4 y=u_{6}(t), y(0)=y^{\prime}(0)=0$.
5. [4 points] Compute $\mathcal{L}\{1\}$ directly from the definition of the Laplace transform.
