Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [10 points] Analyze $y^{\prime}=y^{2}\left(y^{2}-4 y-5\right)$ qualitatively. That is, identify the equilibrium solutions and classify each as stable, semi-stable, or unstable. Include a sketch of typical solutions with a phase diagram.
2. [15 points] Solve the following differential equation: $6 x^{2} y^{2}+\left(e^{y}+y e^{y}+4 x^{3} y\right) y^{\prime}=0$.
3. [15 points] Solve the following IVP: $y^{\prime \prime}+4 y^{\prime}-12 y=0$ with $y(0)=-1$ and $y^{\prime}(0)=1$.
4. [10 points] Find the general solution to $y^{(5)}+4 y^{(4)}+4 y^{(3)}=0$.
5. [20 points] Find the general solution to $y^{\prime \prime}-10 y^{\prime}+34 y=t e^{t}$.
6. [20 points] Given that $y_{1}=t^{-1}$ is a solution to $t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0$ for $t>0$, find another solution y_{2} that forms a fundamental set of solutions with y_{1}.
7. [10 points] Show that $y_{1}=\cos (t)$ and $y_{2}=\sin (t)$ form a fundamental set of solutions to $y^{\prime \prime}+y=0$.
