Name: \qquad

1. [2 parts, 2 points each] Convert the following functions to the form $R \cos \left(\omega_{0} t-\delta\right)$.
(a) $4 \cos (2 t)-3 \sin (2 t)$
(b) $-7 \cos (t)+2 \sin (t)$
2. [1 point] An object of mass $m(\mathrm{~kg})$ is attached to a spring with spring constant $k\left(\mathrm{~kg} / \mathrm{s}^{2}\right)$. The system is damped with damping constant $\gamma(\mathrm{kg} / \mathrm{s})$. The system is critically damped if and only if m, γ, and k satisfy a certain equation. What is this equation? (Hint: if you do not have this memorized, derive it directly from the differential equation that models spring/mass systems.)
3. A mass of 250 grams stretches a spring 8 cm . The system is undamped. Initially, the mass is pushed up a distance of 2 cm from its equilibrium position and released with a downward velocity of $10 \mathrm{~cm} / \mathrm{s}$.
(a) [3 points] Find the position $u(t)$ of the spring at time t. Express u in cm and t in s.
(b) [$\mathbf{2}$ points] Determine the maximum distance of the mass from its equilibrium position and the time when it first reaches this position. Hint: first express $u(t)$ in the form $u(t)=R \cos \left(\omega_{0} t-\delta\right)$.
