Name: \qquad

1. [2 parts, 1 point each] Compute the following.
(a) $\frac{3+2 i}{4-i}$
(b) $(2+i) e^{1-\frac{\pi}{2} i}$
2. [3 points] Using a step size of $h=0.5$, use Euler's method to approximate $y(0.5), y(1)$, and $y(1.5)$ in the initial value problem with $y^{\prime}=2(y-x)$ with $y(0)=1$.
3. [2 points] Indicate whether the given differential equations are linear and separable, or can be so transformed after suitable algebraic manipulation. You do not need to show your work.

Equation	Linear? (Yes/No)	Separable? (Yes/No)
$y^{\prime}=3 t^{2} y+t$		
$y^{\prime}=4 y^{2} \sin t$		
$(3 x) d x-(4 y) d y=0$		
$\left(y^{\prime}\right)^{3}=t y$		

4. [3 points] Find an integrating factor $\mu(x)$ that depends only on x to solve

$$
\frac{d y}{d x}=-\left(\frac{y \sin x+2 y x(\cos x)}{x \sin x}\right) .
$$

Hint: rewrite the equation in standard differential form. After transforming to an exact equation, try imposing $\psi_{y}=N$ first.

