Name: \qquad
Directions: Show all work. No credit for answers without work.

1. A traffic study examines the average daily usage of a stretch of road. The study finds that, in the absence of any congestion, the daily usage would increase at a rate of 60 vehicles per day. The effect of congestion is to reduce the daily usage at a rate proportional to the current daily usage, with proportionality constant 0.004 (days) ${ }^{-1}$. Let y be the daily usage of the road (in vehicles) at time t (in days).
(a) [1 point] Write a differential equation for y.
(b) $[2$ points $]$ Solve the initial value problem with $y(0)=y_{0}$.
(c) [2 points] If the average daily usage is currently 700 vehicles, how long will it take for the usage to increase to 90% of the limiting value?
2. [2 points] Determine the values of r for which $w=e^{r t}$ is a solution to $\frac{d^{2} w}{d t^{2}}+3 \frac{d w}{d t}-4 w=0$.
3. [3 points] Solve the initial value problem $y^{\prime}+\frac{3}{t} y=\frac{\cos t}{t^{2}}$ with $y(\pi)=1$ and $t>0$.
