Directions:

- This is a take home midterm exam.
- Solve 5 of the following 6 problems.
- All solutions require justification. For computational questions, show your work.
- You are allowed to use the course textbook, notes from class, class homeworks and homework solutions, and non-programmable calculators.
- No other aids are permitted. In particular, no computer/sage assistance is allowed.
- You may not discuss these problems with anyone except for me until the exam is past due.
- When submitting your midterm exam, sign the following honor pledge, and include this page.

Honor Pledge

I have not discussed these problems with anyone, except perhaps the instructor. I have not used any unauthorized materials. My work on this exam is my own.

Signed:

1. [NT 2-4.2] Without using the fundamental theorem of algebra (i.e. the prime factorization theorem), show directly that every positive integer is uniquely representable as the product of a non-negative power of two (possibly 2^{0}) and an odd integer.
2. Find all integral solutions (x, y) to the equation $24 x+14 y=8$.
3. Prove or disprove the following. Let a_{1}, \ldots, a_{r} be positive even integers, and let b_{1}, \ldots, b_{s} be positive integers. If $r \geq s+3$ and $a_{i}>b_{j}$ for all i and j, then the quotient $\left(a_{1} a_{2} \cdots a_{r}\right) /\left(b_{1} b_{2} \cdots b_{s}\right)$ is either an even integer or a non-integral rational.
4. Find all integers x that satisfy the following system of congruences:

$$
9 x \equiv 1 \quad(\bmod 20) \quad 52 x \equiv 2 \quad(\bmod 209) \quad 8 x \equiv 3 \quad(\bmod 21)
$$

5. Prove that if n is divisible by 11 and n^{\prime} is obtained from n by inserting two identical digits between consecutive digits of n, then n^{\prime} is also divisible by 11 . For example, since 407 is divisible by 11 , the following are also divisible by 11: 22407, 43307, 40997, and 40722.
6. [NT 6-2.5] Prove that $\sigma(n) \equiv d(m)(\bmod 2)$ where m is the largest odd factor of n.
