Directions: Solve the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. Partition Exercises.
(a) Find the conjugate partition to $16=5+4+4+2+1$.
(b) [NT 12-3.1] For the case $n=8$, list the corresponding pairs of partitions of n in which all parts are odd and partitions of n into distinct parts given by Theorem 12-3.
2. Sums of three squares.
(a) [NT 11-2.9] Show that no integer of the form $4^{a}(8 m+7)$ is the sum of three squares. Hint: consider the congruence $x^{2}+y^{2}+z^{2} \equiv 7(\bmod 8)$.
(b) Prove or disprove: if x and y are representable as the sum of three squares, then so is $x y$.
3. Let p be a prime.
(a) Let a be an integer such that $p \nmid a$, and let h be the order of a. Show that if $a \not \equiv 1$ $(\bmod p)$, then $1+a+a^{2}+\cdots+a^{h-1} \equiv 0(\bmod p)$.
(b) Let $Q=\{a: 1 \leq a \leq p-1$ and a is a quadratic residue $\}$. Prove that if $p \geq 5$, then $\sum_{t \in Q} t \equiv 0(\bmod p)$.
(c) [Challenge] Let $R=\{a: 1 \leq a \leq p-1$ and a is a primitive root $\}$. Prove that $\sum_{t \in R} t \equiv$ $\mu(p-1)(\bmod p)$, where $\mu(n)$ is the Möbius function.
4. Prove that the only integral solutions to $2^{a}-3^{b}=1$ are $(a, b)=(1,0)$ and $(a, b)=(2,1)$. Hint: look at the equation modulo 3 and modulo 4.
5. Let p be an odd prime. Determine the number of mutually incongruent solutions to $x^{2}+y^{2} \equiv 0$ $(\bmod p)$. (A solution (x, y) is congruent to $\left(x^{\prime}, y^{\prime}\right)$ if $(x, y) \equiv\left(x^{\prime}, y^{\prime}\right)(\bmod p)$. When $p=3$, there is 1 solution (0,0), and when $p=5$, there are 9 solutions.)
6. Let $P(q)$ be the generating function for the partition numbers. That is, $P(q)=\sum_{n \geq 0} p(n) q^{n}$ by definition, and $P(q)=\prod_{j \geq 1} \frac{1}{1-x^{j}}$ for $|q|<1$ by Theorem 13-3.
(a) Let $a_{k}(n)$ be the number of partitions of n in which each part is used less than k times, and let $A_{k}(q)$ be the generating function $A_{k}(q)=\sum_{n \geq 0} a_{k}(n) q^{n}$. Show that $A_{k}(q)=\frac{P(q)}{P\left(q^{k}\right)}$ for $|q|<1$.
(b) Let $b_{k}(n)$ be the number of partitions of n in which no part is divisible by k, and let $B_{k}(q)$ be the generating function $B_{k}(q)=\sum_{n \geq 0} b_{k}(n) q^{n}$. Show that $B_{k}(q)=\frac{P(q)}{P\left(q^{k}\right)}$ for $|q|<1$.

Note: Since $A_{k}(q)=B_{k}(q)$, it follows that $a_{k}(n)=b_{k}(n)$ for all n.

