Directions: Solve the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

- 1. Partition Exercises.
 - (a) Find the conjugate partition to 16 = 5 + 4 + 4 + 2 + 1.
 - (b) [NT 12-3.1] For the case n = 8, list the corresponding pairs of partitions of n in which all parts are odd and partitions of n into distinct parts given by Theorem 12-3.
- 2. Sums of three squares.
 - (a) [NT 11-2.9] Show that no integer of the form $4^a(8m + 7)$ is the sum of three squares. Hint: consider the congruence $x^2 + y^2 + z^2 \equiv 7 \pmod{8}$.
 - (b) Prove or disprove: if x and y are representable as the sum of three squares, then so is xy.
- 3. Let p be a prime.
 - (a) Let a be an integer such that $p \nmid a$, and let h be the order of a. Show that if $a \not\equiv 1 \pmod{p}$, then $1 + a + a^2 + \cdots + a^{h-1} \equiv 0 \pmod{p}$.
 - (b) Let $Q = \{a \colon 1 \le a \le p-1 \text{ and } a \text{ is a quadratic residue}\}$. Prove that if $p \ge 5$, then $\sum_{t \in Q} t \equiv 0 \pmod{p}$.
 - (c) [Challenge] Let $R = \{a: 1 \le a \le p-1 \text{ and } a \text{ is a primitive root}\}$. Prove that $\sum_{t \in R} t \equiv \mu(p-1) \pmod{p}$, where $\mu(n)$ is the Möbius function.
- 4. Prove that the only integral solutions to $2^a 3^b = 1$ are (a, b) = (1, 0) and (a, b) = (2, 1). Hint: look at the equation modulo 3 and modulo 4.
- 5. Let p be an odd prime. Determine the number of mutually incongruent solutions to $x^2 + y^2 \equiv 0 \pmod{p}$. (A solution (x, y) is congruent to (x', y') if $(x, y) \equiv (x', y') \pmod{p}$. When p = 3, there is 1 solution (0, 0), and when p = 5, there are 9 solutions.)
- 6. Let P(q) be the generating function for the partition numbers. That is, $P(q) = \sum_{n\geq 0} p(n)q^n$ by definition, and $P(q) = \prod_{j\geq 1} \frac{1}{1-x^j}$ for |q| < 1 by Theorem 13–3.
 - (a) Let $a_k(n)$ be the number of partitions of n in which each part is used less than k times, and let $A_k(q)$ be the generating function $A_k(q) = \sum_{n\geq 0} a_k(n)q^n$. Show that $A_k(q) = \frac{P(q)}{P(q^k)}$ for |q| < 1.
 - (b) Let $b_k(n)$ be the number of partitions of n in which no part is divisible by k, and let $B_k(q)$ be the generating function $B_k(q) = \sum_{n \ge 0} b_k(n)q^n$. Show that $B_k(q) = \frac{P(q)}{P(q^k)}$ for |q| < 1.

Note: Since $A_k(q) = B_k(q)$, it follows that $a_k(n) = b_k(n)$ for all n.