1. [EC 13.2 .34$]$ Find the work done by the force field $\vec{F}(x, y)=x \sin y \vec{i}+y \vec{j}$ on a particle that moves along the parabola $y=x^{2}$ from $(-1,1)$ to $(2,4)$.
2. [EC 13.3. $\{4,6,8\}$] Determine whether or not \vec{F} is a conservative vector field. If it is, find a function f such that $\vec{F}=\nabla f$.
(a) $\vec{F}(x, y)=\left(x^{3}+4 x y\right) \vec{i}+\left(4 x y-y^{3}\right) \vec{j}$
(b) $\vec{F}(x, y)=e^{y \vec{i}}+x e^{y} \vec{j}$
(c) $\vec{F}(x, y)=(1+2 x y+\ln x) \vec{i}+x^{2} \vec{j}$
3. [EC 13.3.14] Find a function f such that $\nabla f=\vec{F}$ and use it to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y, z)=\left(2 x z+y^{2}\right) \vec{i}+2 x y \vec{j}+\left(x^{2}+3 z^{2}\right) \vec{k}$ and C is the curve given by $\vec{r}(t)=t^{2} \vec{i}+(t+$ 1) $\vec{j}+(2 t-1) \vec{k}$ for $0 \leq t \leq 1$.
4. [EC 13.4.2] Evaluate the line integral first directly, and then using Green's Theorem: $\int_{C} y d x-$ $x d y$, where C is the unit circle centered at the origin.
5. [EC 13.4.8] Use Green's Theorem to evaluate the line integral $\int_{C} x^{2} y^{2} d x+4 x y^{3} d y$ where C is the positively oriented curve along the triangle with vertices $(0,0),(1,3)$, and $(0,3)$.
