- 1. [EC 13.2.34] Find the work done by the force field $\vec{F}(x, y) = x \sin y \vec{i} + y \vec{j}$ on a particle that moves along the parabola $y = x^2$ from (-1, 1) to (2, 4).
- 2. [EC 13.3.{4,6,8}] Determine whether or not \vec{F} is a conservative vector field. If it is, find a function f such that $\vec{F} = \nabla f$.
 - (a) $\vec{F}(x,y) = (x^3 + 4xy)\vec{i} + (4xy y^3)\vec{j}$
 - (b) $\vec{F}(x,y) = e^y \vec{i} + x e^y \vec{j}$
 - (c) $\vec{F}(x,y) = (1 + 2xy + \ln x)\vec{i} + x^2\vec{j}$
- 3. [EC 13.3.14] Find a function f such that $\nabla f = \vec{F}$ and use it to evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F}(x, y, z) = (2xz + y^2)\vec{i} + 2xy\vec{j} + (x^2 + 3z^2)\vec{k}$ and C is the curve given by $\vec{r}(t) = t^2\vec{i} + (t + 1)\vec{j} + (2t 1)\vec{k}$ for $0 \le t \le 1$.
- 4. [EC 13.4.2] Evaluate the line integral first directly, and then using Green's Theorem: $\int_C y dx x dy$, where C is the unit circle centered at the origin.
- 5. [EC 13.4.8] Use Green's Theorem to evaluate the line integral $\int_C x^2 y^2 dx + 4xy^3 dy$ where C is the positively oriented curve along the triangle with vertices (0,0), (1,3), and (0,3).