- 1. [EC 12.4.8] Find the mass and center of mass of the lamina occupying the region D with density ρ where D is bounded by $y = \sqrt{x}$, y = 0, and x = 1, and $\rho(x, y) = x$.
- 2. [EC 12.5.4] Evaluate $\int_0^1 \int_x^{2x} \int_0^y 2xyz \, dz \, dy \, dx$.
- 3. [EC 12.5.12] Evaluate $\iiint_E xz \, dV$ where E is the solid tetrahedron with vertices (0,0,0), (0,1,0), (1,1,0), and (0,1,1).
- 4. [EC 12.6.4(a)] Change from rectangular to cylindrical coordinates: (3, 3, -2).
- 5. [EC 12.6.18] Evaluate $\iiint_E (x^3 + xy^2) dV$, where E is the solid in the first octant (x, y, z are all positive) that lies beneath the paraboloid $z = 1 x^2 y^2$.
- 6. [EC 12.6.28] Evaluate by changing to cylindrical coordinates:

$$\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} \sqrt{x^2+y^2} \, dz \, dy \, dx$$

- 7. [EC 12.7.2a] Change $(5, \pi, \pi/2)$ from spherical coordinates to rectangular coordinates.
- 8. [EC 12.7.4a] Change $(0, \sqrt{3}, 1)$ from rectangular coordinates to spherical coordinates.
- 9. [EC 12.7.10] Write the equation in spherical coordinates,
 - (a) $x^2 + y^2 + z^2 = 2$ (b) $z = x^2 - y^2$
- 10. [EC 12.7.22] Evaluate $\iiint_H (x^2 + y^2) dV$, where *H* is the hemispherical region that lies above the *xy*-plane and below the sphere $x^2 + y^2 + z^2 = 1$.
- 11. [EC 12.7.26] Find the volume of the solid that lies within the sphere $x^2 + y^2 + z^2 = 4$, above the *xy*-plane, and below the cone $z = \sqrt{x^2 + y^2}$.