1. [EC 12.4.8] Find the mass and center of mass of the lamina occupysing the region D with density ρ where D is bounded by $y=\sqrt{x}, y=0$, and $x=1$, and $\rho(x, y)=x$.
2. [EC 12.5.4] Evaluate $\int_{0}^{1} \int_{x}^{2 x} \int_{0}^{y} 2 x y z d z d y d x$.
3. [EC 12.5.12] Evaluate $\iiint_{E} x z d V$ where E is the solid tetrahedron with vertices $(0,0,0)$, $(0,1,0),(1,1,0)$, and $(0,1,1)$.
4. [EC 12.6.4(a)] Change from rectangular to cylindrical coordinates: $(3,3,-2)$.
5. [EC 12.6.18] Evaluate $\iiint_{E}\left(x^{3}+x y^{2}\right) d V$, where E is the solid in the first octant $(x, y, z$ are all positive) that lies beneath the paraboloid $z=1-x^{2}-y^{2}$.
6. [EC 12.6.28] Evaluate by changing to cylindrical coordinates:

$$
\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{9-x^{2}-y^{2}} \sqrt{x^{2}+y^{2}} d z d y d x
$$

7. [EC 12.7.2a] Change $(5, \pi, \pi / 2)$ from spherical coordinates to rectangular coordinates.
8. [EC 12.7.4a] Change $(0, \sqrt{3}, 1)$ from rectangular coordinates to spherical coordinates.
9. [EC 12.7.10] Write the equation in spherical coordinates,
(a) $x^{2}+y^{2}+z^{2}=2$
(b) $z=x^{2}-y^{2}$
10. [EC 12.7.22] Evaluate $\iiint_{H}\left(x^{2}+y^{2}\right) d V$, where H is the hemispherical region that lies above the $x y$-plane and below the sphere $x^{2}+y^{2}+z^{2}=1$.
11. [EC 12.7.26] Find the volume of the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$-plane, and below the cone $z=\sqrt{x^{2}+y^{2}}$.
