1. [EC 12.2.16] Compute $\iint_{D} 2 x y d A$ where D is the triangular region with vertices $(0,0),(1,2)$, and $(0,3)$.
2. [EC 12.2.26] Find the volume of the solid bounded by the cylinders $x^{2}+y^{2}=r^{2}$ and $y^{2}+z^{2}=$ r^{2}.
3. [EC 12.2. $\{40,42\}]$ Evaluate the following.
(a) $\int_{0}^{1} \int_{x^{2}}^{1} x^{3} \sin \left(y^{3}\right) d y d x$
(b) $\int_{0}^{8} \int_{y^{1 / 3}}^{2} e^{x^{4}} d x d y$
4. [EC 12.3.6] Sketch the region whose area is given by the integral and evaluate the integral: $\int_{0}^{\pi / 2} \int_{0}^{4 \cos \theta} r d r d \theta$
5. [EC 12.3.18] Use polar coordinates to find the volume of the solid bounded by the paraboloid $z=1+2 x^{2}+2 y^{2}$ and the plane $z=7$ in the first octant (where x, y, and z are all at least 0).
