1. [EC 12.1.2] If $R=[1,3] \times[0,2]$, use a Riemann sum with $m=4, n=2$ to estimate the value of $\iint_{R}\left(y^{2}-2 x^{2}\right) d A$. Take sample points to be the upper left corners of the squares.
2. [EC 12.1. $\{12,16,20\}]$ Calculate the iterated integral.
(a) $\int_{2}^{4} \int_{-1}^{1}\left(x^{2}+y^{2}\right) d y d x$
(b) $\int_{0}^{1} \int_{1}^{2} \frac{x e^{x}}{y} d y d x$
(c) $\int_{0}^{1} \int_{0}^{1} x y \sqrt{x^{2}+y^{2}} d y d x$
3. [EC 12.1.22] Calculate $\iint_{R} \cos (x+2 y) d A$ for $R=[0, \pi] \times[0, \pi / 2]$.
4. [EC 12.2.8] Evaluate the double integral $\iint_{D} \frac{4 y}{x^{3}+2} d A$ where $D=\{(x, y): 1 \leq x \leq 2,0 \leq$ $y \leq 2 x\}$.
5. [EC 12.2.24] Find the volume of the solid bounded by the cylinder $y^{2}+z^{2}=4$ and the planes $x=2 y, x=0$, and $z=0$ in the first octant (where x, y, and z are all at least 0).
