1. [EC 11.5. $\{2,6,20\}$] Use the chain rule to find the indicated (partial) derivative(s).
(a) $d z / d t$ for $z=x \ln (x+2 y), x=\sin t, y=\cos t$.
(b) $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ for $z=x / y, x=s e^{t}, y=1+s e^{-t}$.
(c) $\frac{\partial M}{\partial u}$ and $\frac{\partial M}{\partial v}$ when $(u, v)=(3,-1)$ for $M=x e^{y-z^{2}}, x=2 u v, y=u-v, z=u+v$.
2. [EC 11.5.28] Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for $y z=\ln (x+z)$.
3. [EC 11.5.32] The radius of a right circular cone is increasing at a rate of $1.8 \mathrm{in} / \mathrm{s}$ while its height is decreasing at a rate of $2.5 \mathrm{in} / \mathrm{s}$. At what rate is the volume of the cone changing when the radius is 120 in . and the height is 140 in.?
4. [EC 11.5.44(b,c)] Find $\partial z / \partial \theta$ and $\partial^{2} z / \partial r \partial \theta$ for $z=f(x, y)$ where $x=r \cos \theta$ and $y=r \sin \theta$.
