1. [EC 11.3. $\{10,12,18,22\}]$ Find the first partial derivatives of the function.
(a) $z=y \ln x$
(c) $f(x, y)=\int_{y}^{x} \cos \left(t^{2}\right) d t$
(b) $f(x, y)=x^{y}$
(d) $w=\sqrt{r^{2}+s^{2}+t^{2}}$
2. [EC 11.3.38] Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for $y z=\ln (x+z)$.
3. [EC 11.3.44] Find all four second partial derivatives of $f(x, y)=\ln (3 x+5 y)$.
4. [EC 11.4.4] Find the equation of the tangent plane to $z=y \ln x$ at $(1,4,0)$.
5. [EC 11.4.30] The pressure, volume, and temperature of a mole of an ideal gas are related by the equation $P V=8.31 T$, where P is measured in kilopascals, V in liters, and T in kelvins. Use differentials to find the approximate change in the pressure if the volume increases from 12 L to 12.3 L and the temperature decreases from 310 K to 305 K .
