Name: \qquad
Directions: Show all work. No credit for answers without work. This test has 110 points but scores will be taken out of 100 .

1. [15 points] Evaluate $\int_{0}^{\pi / 2} \int_{0}^{1}(\sin x) e^{y} d y d x$.
2. [15 points] Let D be the region bounded by the parabolas $x=1-y^{2}$ and $x=y^{2}-1$. Evaluate $\iint_{D} y^{2} d A$.
3. [15 points] An spiral-shaped fence encloses a modern garden containing the origin (0,0). The fence is described by the polar equation $r=1+\theta$ for $0 \leq \theta \leq 2 \pi$. Find the area of the garden.

4. [15 points] Evaluate $\int_{0}^{6} \int_{y / 2}^{3} y \cos \left(1+x^{3}\right) d x d y$. Hint: interpret as a double integral over a region and change the order of integration.
5. [15 points] A lamina of uniform density occupies the semi-circular region D consisting of all points (x, y) such that $x^{2}+y^{2} \leq 1$ and $y \geq 0$. Find the center of mass.
6. [5 points] What does it mean for a vector field to be conservative?
7. [15 points] Evaluate $\iiint_{E} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d V$, where E is the solid enclosed by the sphere $x^{2}+y^{2}+z^{2}=9$ in the first octant (where x, y, and z are all at least zero).
8. [15 points] Evaluate $\int_{C} x y^{2} d s$ where C is the curve given by $\vec{r}(t)=(2 \sin t) \vec{i}+(2 \cos t) \vec{j}+3 t \vec{k}$ for $0 \leq t \leq \pi$.
