Name: \qquad
Directions: Show all work. No credit for answers without work. This test has 100 points but scores will be taken out of 88 .

1. [12 points] Let $f(x, y)=\ln \left(y / x^{2}\right)$. (i) What is the domain of f ? (ii) Sketch a contour map of f showing the level curves of heights 0 and 1 . Label each curve with its height.
2. [$\mathbf{2}$ parts, $\mathbf{6}$ points each] Find the limit, if it exists, or show that the limit does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+x y}{x^{2}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$
3. [4 points] Let $f(x, y)$ be a differentiable function. Express $f_{y}(2,3)$ as the limit of a difference quotient.
4. [12 points] Let $f(x, y)=x e^{x^{2} y}$. Find f_{x} and f_{y}.
5. [12 points] Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ where $x y z^{2}+x \cos (z)=0$.
6. [12 points] Find the equation of the tangent plane to the surface of $z=\sin \left(x^{2}-y^{2}\right)$ at the point $(1,1,0)$.
7. [12 points] The width w and height h of a rectangle are changing. At a particular instant in time, $w=5 \mathrm{~cm}$ and increasing at $2 \mathrm{~cm} / \mathrm{s}$, and $h=8 \mathrm{~cm}$ and decreasing at $3 \mathrm{~cm} / \mathrm{s}$. Find the rate of change in (i) the area of the rectangle, and (ii) the length of its diagonal.
8. [12 points] Find the directional derivative of $f(x, y)=y^{2} \tan (x)$ at $(\pi / 4,-2)$ in the direction of $2 \vec{i}+\vec{j}$.
9. [12 points] Find and classify the critical points of $f(x, y)=x^{3} y+12 x^{2}-8 y$ as local minimums, local maximums, or saddle points.
