Name: \qquad
Directions: Show all work. No credit for answers without work. Each problem is worth 10 points. Complete 7 of the 8 problems. Your lowest scoring problem is dropped.

1. [2 parts, $\mathbf{5}$ points each] For each part below, determine whether the given three points lie on a straight line.
(a) $A(2,4,2), B(3,7,-2), C(1,3,3)$
(b) $D(0,-5,5), E(1,-2,4), F(3,4,2)$
2. [10 points] Find a unit vector with the same direction as $7 \vec{i}-\vec{j}+3 \vec{k}$.
3. [10 points] Find the angle between the vectors \vec{a} and \vec{b}, where $\vec{a}=\vec{i}-\vec{k}$ and $\vec{b}=3 \vec{i}-2 \vec{j}+\vec{k}$.
4. [10 points] Find two unit vectors orthogonal to both $\langle 2,4,-1\rangle$ and $\langle 3,-4,6\rangle$.
5. [10 points] Find the equation of the plane that passes through the point $(2,1,-1)$ and contains the line given by $x=3+t, y=-1+2 t$, and $z=2+5 t$.
6. [10 points] Find the derivative of the vector function given by $\vec{r}(t)=e^{t^{2}} \vec{i}-\vec{j}+\sin (5 t+2) \vec{k}$.
7. [10 points] Find the curvature of the curve given by $\vec{r}(t)=2 \sin t \vec{i}-6 t \vec{j}+2 \cos t \vec{k}$.
8. At time $t=0$, a projectile is fired from the origin $(0,0)$ with an initial speed of $200 \mathrm{~m} / \mathrm{s}$ at an angle of elevation of 60°. Recall that the acceleration g due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(a) [7 points] Find the position function $\vec{r}(t)$ that governs the motion of the projectile.
(b) [3 points] Find the maximum height of the projectile.
