Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [6 points] Let V be the vector space of real-valued functions on the whole real line, over the field of real numbers. Is $\left\{x^{2}, x^{2}+3 x, 2 x\right\}$ linearly independent in V ? Justify your answer.
2. [3 parts, 2 points each] The following questions are about the vector space \mathbb{R}^{4}.
(a) Is there a vector \vec{a} in \mathbb{R}^{4} that is contained in the span of every set of vectors? If so, write down \vec{a} explicitly. If not, explain why not.
(b) Let S be a set of vectors in \mathbb{R}^{4}. Is it true that if $\vec{a} \in S$, then \vec{a} is in the span of S ? Explain.
(c) Give an example of a basis of \mathbb{R}^{4}.
3. [6 parts, 2 points each] Let

$$
A=\left[\begin{array}{ccc}
3 & 1+i & 2-i \\
4 & 0 & 1
\end{array}\right] \quad B=\left[\begin{array}{cc}
-2 & 0 \\
1 & i
\end{array}\right] \quad C=\left[\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right] \quad D=\left[\begin{array}{cc}
3+2 i & -7 \\
0 & 1 \\
2 i & 0
\end{array}\right]
$$

be matrices over the field of complex numbers \mathbb{C}. For each of the following, write the specified matrix explicitly if possible, or write "undefined" otherwise.
(a) $A+B$
(d) C^{T}
(b) $i D$
(e) $A A$
(c) \bar{A}
(f) $B B$
4. [12 points] Using matrices and Gauss-Jordan elimination, find all solutions to the following system of linear equations.

$$
\begin{array}{r}
x_{1}+2 x_{2}-2 x_{3}+2 x_{4}=0 \\
2 x_{2}+4 x_{3}-2 x_{4}=0 \\
2 x_{1} \\
-2 x_{1}+3 x_{2}+12 x_{3}+16 x_{4}=0 \\
\hline 18 x_{3}-19 x_{4}=0
\end{array}
$$

5. [6 points] Find a matrix in Reduced Row Echelon Form that is row-equivalent to the matrix A below.

$$
A=\left[\begin{array}{rrrrr}
3 & 15 & -2 & 11 & 2 \\
2 & 10 & -3 & 9 & -2
\end{array}\right]
$$

6. [6 points] Consider the vector space \mathbb{R}^{3} and let $S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]\right\}$. Which vectors
$\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ are in $\operatorname{span}(S)$? Give a simple condition on b_{1}, b_{2}, and b_{3} which answers this question.
