Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [2 points] Write the (3×2)-matrix A where $a_{i j}=2 i-j$.
2. [1 point] Complete the following sentence: if A is an $(m \times n)$-matrix, then the product $A A$ is defined if and only if
3. [1 point] True or false: matrix addition is commutative.
4. [1 point] True or false: matrix multiplication is commutative.
5. [1 point] Complete the following sentence: matrix multiplication is associative since for all matrices A, B, and C, \ldots
6. [1 point] Explicitly write down a matrix X in $\mathbb{Q}^{3 \times 3}$ such that for every matrix A in $\mathbb{Q}^{3 \times 3}$, the equations $A X=A$ and $X A=A$ hold. What is X called?
7. [3 points] Let

$$
A=\left[\begin{array}{ccc}
i & 2-i & 0 \\
3 & 1 & 4-2 i
\end{array}\right] \quad B=\left[\begin{array}{cc}
i & 0 \\
1 & 2
\end{array}\right] \quad C=\left[\begin{array}{cc}
2 & -i \\
3 & 1
\end{array}\right]
$$

be matrices over the field of complex numbers \mathbb{C}. For each of the following, write the specified matrix explicitly if possible, or write "undefined" otherwise.
(a) $3 B$
(b) $B+i C$
(e) $A B$
(c) A^{*}
(f) $B A$
(d) The additive inverse of C

