Name: \qquad
Directions: Show all work. Answers without work generally do not earn points. This test has 60 points, but is scored out 50 (scores capped at 50).

1. [6 points] Recall that M_{22} is the vector space of (2×2)-matrices. Either show that the following matrices are linearly independent or express the zero vector as a non-trivial linear combination.

$$
\left[\begin{array}{rr}
5 & 3 \\
8 & -1
\end{array}\right],\left[\begin{array}{ll}
11 & 5 \\
12 & 1
\end{array}\right],\left[\begin{array}{rr}
-1 & 1 \\
4 & -3
\end{array}\right]
$$

2. [4 parts, 1.5 points each] Let S be a subset of M_{22} of size n, so that $S=\left\{v_{1}, \ldots, v_{n}\right\}$ where each v_{j} is a (2×2)-matrix. In (a)-(d) below, you do not need to show any work.
(a) If S is linearly independent, what (if anything) can you say about n ?
(b) If S is linearly dependent, what (if anything) can you say about n ?
(c) If S spans M_{22}, what (if anything) can you say about n ?
(d) If S does not span M_{22}, what (if anything) can you say about n ?
3. [2 parts, 3 points each] Consider P_{3}, the vector space of polynomials of degree at most 3 .
(a) Find a basis for P_{3}. What is the dimension of P_{3} ?
(b) Let V be the subspace of P_{3} consisting of all polynomials $p(t)$ such that $p(t)=p(-t)$ for every real number t. Find a basis for V. (Hint: consider a general element $p(t)=$ $a t^{3}+b t^{2}+c t+d$. What must be true for $p(t)=p(-t)$ to hold?)
4. [6 points] A matrix A and its reduced row-echelon form are displayed below.

$$
A=\left[\begin{array}{rrrrrr}
1 & 1 & 7 & 1 & 1 & 1 \\
-1 & 1 & 3 & 3 & 0 & -3 \\
2 & 1 & 9 & 0 & 1 & 4 \\
-2 & 1 & 1 & 4 & 1 & -8
\end{array}\right] \quad \operatorname{rref}(A)=\left[\begin{array}{rrrrrr}
1 & 0 & 2 & -1 & 0 & 3 \\
0 & 1 & 5 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Find bases for the row space, the column space, and the null space of A. Clearly label which basis is for which space.
5. [6 points] Consider the linear transformation $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Interpret the transformation f graphically, as a function mapping points in the plane to other points in the plane.
6. [6 points] Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that

$$
L\left(\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

$$
L\left(\left[\begin{array}{l}
2 \\
4 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

If possible, compute $L\left(\left[\begin{array}{l}3 \\ 9 \\ 5\end{array}\right]\right)$.
7. [2 parts, 6 points each] Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by

$$
L\left(\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]\right)=\left[\begin{array}{l}
u_{1}+u_{2} \\
u_{2}+u_{3}
\end{array}\right]
$$

(a) Find a basis for $\operatorname{ker} L$.
(b) Let S and T be ordered bases for \mathbb{R}^{3} and \mathbb{R}^{2} given by

$$
S=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right\} \quad T=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right\}
$$

Find the matrix A that represents L with respect to S and T.
8. [2 parts, 6 points each] Let $L: V \rightarrow W$ be a linear transformation, let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ where each v_{i} is a vector in V, and let $T=\left\{L\left(v_{1}\right), \ldots, L\left(v_{n}\right)\right\}$. One of the following statements is true and the other is false.

- If S is linearly independent in V, then T is linearly independent in W.
- If T is linearly independent in W, then S is linearly independent in V.
(a) Identify the true statement and prove it.
(b) Identify the false statement and give a counterexample. Your counterexample should consist of a vector space V, a vector space W, a linear transformation $L: V \rightarrow W$, and appropriate sets S and T. Hint: the simpler, the better.

