Name: \qquad
Directions: Show all work. Answers without work generally do not earn points. This test has 60 points, but is scored out 50 (scores capped at 50).

1. [$\mathbf{3}$ parts, $\mathbf{3}$ points each] Find the determinant of the following matrices.
(a) $\left[\begin{array}{rr}2 & 2 \\ -1 & 5\end{array}\right]$
(c) $\left[\begin{array}{llll}2 & 3 & 1 & 4 \\ 5 & 1 & 2 & 1 \\ 0 & 0 & 0 & 2 \\ 2 & 3 & 3 & 1\end{array}\right]$
(b) $\left[\begin{array}{rrr}3 & 1 & 5 \\ 2 & -1 & 1 \\ 1 & -2 & -4\end{array}\right]$
2. [5 points] If $A^{2}=A$, what are the possible values for $\operatorname{det}(A)$? Hint: what is $\operatorname{det}\left(A^{2}\right)$ in terms of $\operatorname{det}(A)$?
3. [5 points] Find a real number a such that $\left[\begin{array}{rrr}5 & 1 & 4 \\ 2 & -2 & 3 \\ -3 & 1 & a\end{array}\right]$ is singular. Hint: what is the connection between singular matrices and determinants?
4. [5 points] Find values a and b such that $\left[\begin{array}{r}a-2 b \\ 2\end{array}\right]$ and $\left[\begin{array}{r}2 a+b \\ b-a\end{array}\right]$ are the same vector, and sketch this vector in \mathbb{R}^{2}. Use the horizontal axis for the first/top coordinate and the vertical axis for the second/bottom coordinate.
5. [5 points] Let V be the set of all real (2×1)-matrices, and define operations \oplus and \odot as follows:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \oplus\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2}+y_{2} \\
x_{1}+y_{1}
\end{array}\right] \quad r \odot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
r x_{1} \\
r x_{2}
\end{array}\right]
$$

Find one defining property of vector spaces that (V, \oplus, \odot) lacks. Justify your answer.
6. [5 points] Let V be a real vector space. Prove that exactly one element $\overrightarrow{0}$ in V has the property that $\overrightarrow{0} \oplus \mathbf{u}=\mathbf{u} \oplus \overrightarrow{0}=\mathbf{u}$ for each $\mathbf{u} \in V$.
7. [5 points] Let V be a real vector space. Prove that if $\mathbf{u} \oplus \mathbf{u}=\overrightarrow{0}$, then $\mathbf{u}=\overrightarrow{0}$.
8. [5 points] Let W be the set of all real (2×2)-matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $a+d=c+b$. Is W a subspace of the vector space M_{22} of all (2×2)-matrices? Justify your answer.
9. Recall that P_{2} is the vector space of all polynomials of degree at most 2 .
(a) [3 points] Give a small spanning subset of P_{2}.
(b) [5 points] Let $S=\left\{-t^{2}+4,2 t+1, t^{2}+t+1\right\}$. Is $2 t^{2}+t$ in span S ? Justify your answer.
10. [5 points] Let $A=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 2 & 1 & 5 & 6 \\ 1 & -1 & 7 & 9\end{array}\right]$. Find vectors that span the null space of A.
11. [3 points] Let A be a real $(n \times n)$-matrix with $\operatorname{det}(A)=k$. Find a formula for $\operatorname{det}(A+A)$.

