Name: _____

Directions: Show all work. Answers without work generally do not earn points. This test has 60 points, but is scored out 50 (scores capped at 50).

1. [3 parts, 3 points each] Find the determinant of the following matrices.

(a) $\begin{bmatrix} 2 & 2 \\ -1 & 5 \end{bmatrix}$	(c)	$\left[\begin{array}{c}2\\5\\0\\2\end{array}\right]$	${3 \\ 1 \\ 0 \\ 3 }$	$egin{array}{c} 1 \\ 2 \\ 0 \\ 3 \end{array}$	4^{-1} 1 2 1	

(b)
$$\begin{bmatrix} 3 & 1 & 5 \\ 2 & -1 & 1 \\ 1 & -2 & -4 \end{bmatrix}$$

2. [5 points] If $A^2 = A$, what are the possible values for det(A)? *Hint:* what is det(A^2) in terms of det(A)?

3. [5 points] Find a real number a such that $\begin{bmatrix} 5 & 1 & 4 \\ 2 & -2 & 3 \\ -3 & 1 & a \end{bmatrix}$ is singular. *Hint:* what is the connection between singular matrices and determinants?

4. [5 points] Find values a and b such that $\begin{bmatrix} a-2b\\2 \end{bmatrix}$ and $\begin{bmatrix} 2a+b\\b-a \end{bmatrix}$ are the same vector, and sketch this vector in \mathbb{R}^2 . Use the horizontal axis for the first/top coordinate and the vertical axis for the second/bottom coordinate.

5. [5 points] Let V be the set of all real (2×1) -matrices, and define operations \oplus and \odot as follows:

Γ	$x_1]_{\square}$	$\square \begin{bmatrix} y_1 \end{bmatrix}$]	$\left[\begin{array}{c} x_2 + y_2 \\ x_1 + y_1 \end{array}\right]$	r \bigcirc	x_1	rx_1]
L	$x_2 \end{bmatrix} ^{\bigcirc}$	y_2] -	$\begin{bmatrix} x_1 + y_1 \end{bmatrix}$		x_2	$\begin{bmatrix} rx_1 \\ rx_2 \end{bmatrix}$] ·

Find one defining property of vector spaces that (V, \oplus, \odot) lacks. Justify your answer.

6. [5 points] Let V be a real vector space. Prove that exactly one element $\vec{0}$ in V has the property that $\vec{0} \oplus \mathbf{u} = \mathbf{u} \oplus \vec{0} = \mathbf{u}$ for each $\mathbf{u} \in V$.

7. [5 points] Let V be a real vector space. Prove that if $\mathbf{u} \oplus \mathbf{u} = \vec{0}$, then $\mathbf{u} = \vec{0}$.

8. [5 points] Let W be the set of all real (2×2) -matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that a + d = c + b. Is W a subspace of the vector space M_{22} of all (2×2) -matrices? Justify your answer.

- 9. Recall that P_2 is the vector space of all polynomials of degree at most 2.
 - (a) [3 points] Give a small spanning subset of P_2 .
 - (b) [5 points] Let $S = \{-t^2 + 4, 2t + 1, t^2 + t + 1\}$. Is $2t^2 + t$ in span S? Justify your answer.

10. **[5 points]** Let $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 5 & 6 \\ 1 & -1 & 7 & 9 \end{bmatrix}$. Find vectors that span the null space of A.

11. [3 points] Let A be a real $(n \times n)$ -matrix with det(A) = k. Find a formula for det(A + A).