## Name:

$\qquad$
Directions: Show all work. Answers without work generally do not earn points. This test has 60 points.

1. [2 parts, 6 points each] Solve the following linear systems.
(a) $\begin{aligned} 3 x+y & =5 \\ x-5 y & =1\end{aligned}$
$x+2 y-z=3$
(b) $4 x-6 y+3 z=2$
$6 x-2 y+z=8$
2. [6 parts, 2 points each] Let $A=\left[\begin{array}{rr}1 & 2 \\ -1 & 0\end{array}\right], B=\left[\begin{array}{rr}4 & 1 \\ -2 & -1 \\ 5 & 0\end{array}\right]$, and $C=\left[\begin{array}{rrr}1 & 3 & 0 \\ 0 & 2 & -1\end{array}\right]$. If possible, compute the following. If not possible, write "undefined".
(a) $B^{T}+C$
(d) $A+I_{2}$
(b) $A C$
(e) $A^{2}$
(c) $C A$
(f) $B^{2}$
3. [6 points] Prove that if $A \mathbf{x}=\mathbf{b}$ has more than one solution, then it has infinitely many solutions. (Hint: if $\mathbf{x}_{\mathbf{1}}$ and $\mathbf{x}_{\mathbf{2}}$ distinct solutions, show that appropriate linear combinations of $\mathbf{x}_{\mathbf{1}}$ and $\mathbf{x}_{\mathbf{2}}$ yield infinitely many solutions.)
4. [6 points] Let $A$ and $B$ be matrices of appropriate sizes. One statement is true and the other is false. Select the true statement and prove it.

- If the $r$ th row of $A$ is all zeros, then the $r$ th row of $A B$ is all zeros.
- If the $r$ th column of $A$ is all zeros, then the $r$ th column of $A B$ is all zeros.

5. [6 points] Give an example of a lower-triangular $(3 \times 3)$-matrix with as many non-zero entries as possible.
6. [6 points] Let $A=\left[\begin{array}{rrrr}4 & 2 & -3 & 6 \\ 1 & 0 & 2 & 0 \\ 7 & 1 & 3 & -4\end{array}\right]$. Find a matrix in reduced row echelon form that is row-equivalent to $A$.
7. [6 points] Let $A=\left[\begin{array}{rr}3 & 6 \\ -1 & 2\end{array}\right]$. Find elementary matrices $E_{1}, \ldots, E_{4}$ such that $E_{4} E_{3} E_{2} E_{1} A=$ $I_{2}$.
8. [6 points] Let $A=\left[\begin{array}{rrr}2 & -1 & 8 \\ 1 & 0 & 2 \\ -2 & 1 & 0\end{array}\right]$. If it exists, find $A^{-1}$. Otherwise, write "does not exist".
