Name: _____

Directions: Show all work. Answers without work generally do not earn points. This test has 60 points.

1. [2 parts, 6 points each] Solve the following linear systems.

1

2. [6 parts, 2 points each] Let $A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 1 \\ -2 & -1 \\ 5 & 0 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 2 & -1 \end{bmatrix}$. If possible, compute the following. If not possible, write "undefined". (a) $B^T + C$ (d) $A + I_2$ (e) A^2 (b) *AC* (f) B^2 (c) CA

Test #1

3. [6 points] Prove that if $A\mathbf{x} = \mathbf{b}$ has more than one solution, then it has infinitely many solutions. (Hint: if $\mathbf{x_1}$ and $\mathbf{x_2}$ distinct solutions, show that appropriate linear combinations of $\mathbf{x_1}$ and $\mathbf{x_2}$ yield infinitely many solutions.)

- 4. [6 points] Let A and B be matrices of appropriate sizes. One statement is true and the other is false. Select the true statement and prove it.
 - If the rth row of A is all zeros, then the rth row of AB is all zeros.
 - If the rth column of A is all zeros, then the rth column of AB is all zeros.

5. [6 points] Give an example of a lower-triangular (3×3) -matrix with as many non-zero entries as possible.

6. [6 points] Let $A = \begin{bmatrix} 4 & 2 & -3 & 6 \\ 1 & 0 & 2 & 0 \\ 7 & 1 & 3 & -4 \end{bmatrix}$. Find a matrix in reduced row echelon form that is row-equivalent to A.

7. [6 points] Let $A = \begin{bmatrix} 3 & 6 \\ -1 & 2 \end{bmatrix}$. Find elementary matrices E_1, \ldots, E_4 such that $E_4 E_3 E_2 E_1 A = I_2$.

8. [6 points] Let
$$A = \begin{bmatrix} 2 & -1 & 8 \\ 1 & 0 & 2 \\ -2 & 1 & 0 \end{bmatrix}$$
. If it exists, find A^{-1} . Otherwise, write "does not exist".