Name: \qquad
Directions: Show all work. No credit for answers without work.

1. Let V be the set of all positive real numbers; define \oplus so that $\mathbf{u} \oplus \mathbf{v}=\mathbf{u v}$ (standard multiplication of reals) and \odot so that $c \odot \mathbf{u}=\mathbf{u}^{c}$. It can be shown that V is a vector space.
(a) [1 point] Identify the zero vector of V. (Your answer should be a specific element in V.)
(b) [3 points] Prove that $c \odot(\mathbf{u} \oplus \mathbf{v})=(c \odot \mathbf{u}) \oplus(c \odot \mathbf{v})$.
2. [2 parts, 3 points each] Determine if the given subsets of \mathbb{R}^{3} are subspaces. Justify your answers.
(a) $W=\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a+b+c=1\right\}$
(b) $W=\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a b c=0\right\}$
