Name: \qquad
This test has 60 points (10 points per page) but is scored out of 50 points. Scores are truncated at 50 .

1. [4 points] Express $1+4+9+\cdots+n^{2}$ in sigma summation notation $\left(\sum\right)$.
2. [6 points] Using induction, prove that $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ for $n \geq 1$.
3. Consider the following code fragment.

$\frac{\text { DoSomething }(n):}{j=0}$
$i=1$
while $i \leq n$ do
$\quad j=j+2 i-1$
$i=i+1$
end while
write j

(a) [2 points] What number does DoSomething(2) write?
(b) [2 points] What number does DoSomething(3) write?
(c) [2 points] What number does DoSomething (n) write?
(d) $[4$ points $]$ Find a loop invariant that would allow you to prove your previous answer is correct. (You do not need to prove that the condition you provide is a loop invariant.)
4. [3 points] A collection of strings S over the alphabet $\{a, b\}$ is defined recursively as follows. Write down the 4 shortest strings in S.

- S contains the empty string λ.
- If $x \in S$, then $a x x b \in S$.

5. Let $A=\{1,\{5\}, 5,6,7\}, B=\{\varnothing,\{3\}, 4,5,6\}$, and $C=\{\varnothing,\{4,6\}\}$.
(a) [6 parts, 0.5 points each] True or False? (Write the whole word as your answer.)
i. $\{6\} \in A$
ii. $\{\varnothing,\{3\}\} \subseteq B$
iii. $\{5,\{5\}\} \in A$
iv. $\{5,\{5\}\} \subseteq A$
v. $\{4,6\} \in C$
vi. $\{4,6\} \subseteq C$
(b) [2 points] Find $B \cap C$.
(c) $[2$ points $]$ Find the powerset $\mathcal{P}(C)$.
6. Let $T(n)=T(n-1)+30 T(n-2)$ for $n \geq 3, T(1)=1$, and $T(2)=1$.
(a) $[\mathbf{1}$ point $]$ Find the first four values of $T(n)$, from $T(1)$ through $T(4)$.
(b) [4 points] Solve the recurrence.
7. Let $T(n)=3 T(n-1)+7$ for $n \geq 2, T(1)=-1$.
(a) $[\mathbf{1}$ point $]$ Find the first four values of $T(n)$, from $T(1)$ through $T(4)$.
(b) [4 points] Solve the recurrence.
8. [5 points] Let A and B be infinite, countable sets. Is $A \cup B$ always countable? Show that your answer is correct.
9. [5 points] Let S be the collection of all infinite strings over the alphabet $\{a, b\}$. For example, the string $a a a a \cdots$ consisting of all a 's, the string $a b a b \cdots$ of alternating a 's and b 's are both members of S. Is S countable? Show that your answer is correct.
10. [3 points] How many 4-digit ATM pins have first and last digits that are both even? For example, 0760 and 8352 count, but 1234 and 3221 do not. Show your work.
11. [3 points] How many 4-digit ATM pins contain exactly one 0? For example, 3021 and 0988 count, but 2010 and 3113 do not. Show your work.
12. [4 points] How many 4-digit ATM pins use each digit at most twice? For example, 2127, 5566 , and 1234 count, but 4544 and 9999 does not. Show your work.
