Name: \qquad

1. [2 points] How many equivalence relations are there on $\{1,2,3\}$?
2. [2 points] A 6-slot database uses a hashing strategy to store numbers; the hash function is $h(x)=x \bmod 6$. Initially, the database is empty. Show a picture of the hash table after the numbers $843,145,1932,533,204$ are inserted in the given order. Collisions are resolved by linear probing.
3. [2 points] Let $A=\{1,2,3,4,5,6,7,8\}$. We consider permutations on A.
(a) Let $f=(25471) \circ(8742)$. Express f as the composition of disjoint cycle permutations.
(b) Find the inverse f^{-1} in tabular form.
4. [2 points] Decide whether the given functions are one-to-one/injective, onto/surjective, or bijective. For each blank cell in the table, write "Yes" if the function has the property, and "No" otherwise. You do not need to show your work.

In the following, let A^{*} be the set of finite strings of a 's and b 's. For example, $a a b a, b b$, and the empty string λ are all in A^{*}. Recall that $\mathbb{N}=\{0,1,2, \ldots\}$ and \mathbb{Z} is the set of integers.

Function	one-to-one	onto	bijective
$f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x+6$			
$f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x^{2}-1$			
$f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x^{3}-1$			
$f: A^{*} \rightarrow \mathbb{N}$ where $f(x)$ equals the length of x			
$f: A^{*} \rightarrow A^{*}$ where $f(x)=x x$			
$f: A^{*} \rightarrow A^{*}$ where $f(x)$ equals the reverse of x			

5. [2 points] In RSA, let $p=47$ and $q=43$. Then $n=2021$ and $\phi(n)=1932$. Pick $e=541$. Use the Euclidean algorithm to find the value of d.
