Name: _____

1. [2 points] How many equivalence relations are there on $\{1, 2, 3\}$?

2. [2 points] A 6-slot database uses a hashing strategy to store numbers; the hash function is $h(x) = x \mod 6$. Initially, the database is empty. Show a picture of the hash table after the numbers 843, 145, 1932, 533, 204 are inserted in the given order. Collisions are resolved by linear probing.

- 3. [2 points] Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. We consider permutations on A.
 - (a) Let $f = (25471) \circ (8742)$. Express f as the composition of disjoint cycle permutations.

(b) Find the inverse f^{-1} in tabular form.

4. [2 points] Decide whether the given functions are one-to-one/injective, onto/surjective, or bijective. For each blank cell in the table, write "Yes" if the function has the property, and "No" otherwise. You do not need to show your work.

In the following, let A^* be the set of finite strings of *a*'s and *b*'s. For example, *aaba*, *bb*, and the empty string λ are all in A^* . Recall that $\mathbb{N} = \{0, 1, 2, ...\}$ and \mathbb{Z} is the set of integers.

Function	one-to-one	onto	bijective
$f: \mathbb{Z} \to \mathbb{Z}$ where $f(x) = x + 6$			
$f: \mathbb{Z} \to \mathbb{Z}$ where $f(x) = x^2 - 1$			
$f: \mathbb{Z} \to \mathbb{Z}$ where $f(x) = x^3 - 1$			
$f\colonA^*\to{\rm I\!N}$ where $f(x)$ equals the length of x			
$f \colon A^* \to A^*$ where $f(x) = xx$			
$f \colon A^* \to A^*$ where $f(x)$ equals the reverse of x			

5. [2 points] In RSA, let p = 47 and q = 43. Then n = 2021 and $\phi(n) = 1932$. Pick e = 541. Use the Euclidean algorithm to find the value of d.