Name: \qquad

1. [2 points] A job advertisement attracts 67 applicants. Of the applicants, a total of 29 have work experience, 16 have an advanced degree, 8 have corporate contacts, 7 have work experience and an advanced degree, 3 have an advanced degree and corporate contacts, 3 have work experience and corporate contacts, and 1 person has all three favorable attributes. How many applicants possess none of the three favorable attributes?
2. [$\mathbf{2}$ points] Find the exact numerical value of $C(11,4)$ (also known as $\binom{11}{4}$).
3. [$\mathbf{2}$ points] How many non-negative integer solutions are there to the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}=50 ?
$$

For example, there are four solutions where one of the variables is 50 and the rest are 0 . You may leave your answer in terms of permutation numbers (e.g. $P(n, r)$), binomial coefficients (e.g. $C(n, r)$), and factorials (e.g. $n!$).
4. [2 points] Find the coefficient of x^{7} in $(7 x-2)^{23}$. You may leave your answer in terms of permutation numbers (e.g. $P(n, r)$), binomial coefficients (e.g. $C(n, r)$), and factorials (e.g. $n!$).
5. [2 points] Give an example of a relation on $\{1,2,3\}$ that is reflexive, symmetric, and not transitive.
6. [1 bonus point] A 6×6-board with is tiled with 2×1 dominos. Prove that it is possible to divide the board in two pieces along a vertical or horizontal line without cutting any of the dominos.

