Name: \qquad

1. [4 parts, 3 points each] The temperature T in degrees Fahrenheit of a frozen pizza placed in a hot oven is given by $T=f(t)$, where t is the time in minutes since the pizza was put in the oven.
(a) What is the sign of $f^{\prime}(t)$? Briefly explain your answer.
(b) What are the units of $f^{\prime}(t)$?
(c) What is the sign of $f^{\prime \prime}(t)$? Briefly explain your answer.
(d) What are the units of $f^{\prime \prime}(t)$?
2. [8 points] Sketch a graph of a continuous function f with the following properties:

- When $x<1, f^{\prime}(x)<0 ; f^{\prime}(1)=0$; and when $x>1, f^{\prime}(x)>0$.
- When $x<3, f^{\prime \prime}(x)>0 ; f^{\prime \prime}(3)=0$; and when $x>3, f^{\prime \prime}(x)<0$.

3. [10 parts, 2 points each] Differentiate the following functions.
(a) $f(x)=4$
(b) $f(x)=3 x^{2}-4 x+1$
(c) $f(x)=\frac{3}{x^{4}}$
(d) $f(x)=e^{-x}$
(e) $f(x)=7^{x}$
(f) $f(x)=3 \sqrt{x}$
(g) $f(x)=\ln \left(\sqrt{3}+e^{2}\right)$
(h) $f(x)=e^{\sqrt{2} \cdot x}$
(i) $f(x)=x^{\ln (4)}$
(j) $f(x)=2 \ln (x)$
4. [4 parts, 5 points each] Differentiate the following functions.
(a) $f(x)=\left(x^{5}+2 x^{3}+2\right)\left(x^{4}+1\right)$
(b) $f(x)=\frac{x^{3}}{x+1}$
(c) $f(x)=\left(e^{x}+\ln (x)\right)^{8}$
(d) $f(x)=\sqrt{e^{4 x}+1}$
5. Let $g(x)=\left(x^{2}+1\right)^{3}$.
(a) [5 points] Find $g^{\prime}(x)$.
(b) $[5$ points $]$ Find the equation of the tangent line to $g(x)$ at $x=-1$.
6. Mike owns a gas station. The retail price R (in dollars) that Mike charges his customers for a gallon of gas is given by $R=\frac{1}{50} B+\frac{1}{3} \ln (B)$, where B is the cost (in dollars) of a barrel of crude oil. The cost B of a barrel of crude oil is, in turn, a function of time t (in days). Currently, the cost B of a barrel of crude oil is $\$ 100$ and increasing at a rate of $\$ 1.50$ per day.
(a) [5 points] Find the current retail price R of a gallon of gas at Mike's gas station.
(b) [5 points] Find the current rate of change in Mike's retail price in dollars per day.
7. Let $f(x)=e^{x}(2 x+1)^{4}$.
(a) $\left[\mathbf{6}\right.$ points] Find $f^{\prime}(x)$.
(b) [7 points] Find the critical points of f.
(c) [7 points] Use the First Derivative Test or Second Derivative Test to classify each critical point as a local minimum, a local maximum, or neither.
