Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [2 parts, $\mathbf{4}$ points each] The graph of $f(x)$ appears below.

(a) Sketch the tangent line to $f(x)$ at $x=3$ in the provided graph.
(b) Estimate $f^{\prime}(3)$.
2. [6 points] The graph of $g(x)$ appears below. Sketch $g^{\prime}(x)$ in the space provided.

3. [$\mathbf{2}$ parts, $\mathbf{3}$ points each] The following is a graph of $h(x)$. Some points are labeled.

(a) At which of the labeled points is the second derivative $h^{\prime \prime}(x)$ positive?
(b) At which of the labeled points is the second derivative $h^{\prime \prime}(x)$ negative?
4. [4 parts, 2 points each] A glass of water is removed from the refrigerator and placed on the counter. The temperature T of the water (in degrees Fahrenheit) is a function $T=f(x)$ of the time x (in minutes) since the water is exposed to room temperature.
(a) In $f(15)=A$, what are the units of 15 ? What are the units of A ?
(b) Do you expect the derivative f^{\prime} to be positive or negative?
(c) In the statement $f^{\prime}(15)=B$, what are the units of B ?
(d) Do you expect the second derivative $f^{\prime \prime}$ to be positive or negative?
5. [2 parts, 3 points each] Fill in the blanks. If $f^{\prime \prime}(x)>0$, then
(a) $f^{\prime}(x)$ is \qquad , and
(b) $f(x)$ is \qquad -
6. [3 parts, 2 points each] Let $C(q)$ be the cost (in dollars) of producing q items, and let $R(q)$ be the revenue (in dollars) received when producing q items.
(a) If $C(40)=2320$ and $C^{\prime}(40)=15$, estimate $C(43)$.
(b) If $C^{\prime}(40)=15$ and $R^{\prime}(40)=18$, estimate the profit that results from producing the 41 st item.
(c) The current production level is 67 items, and $C(67)=4208, C^{\prime}(67)=24, R(67)=3100$, and $R^{\prime}(67)=32$. In these circumstances, should the company increase production or decrease production? Why?
7. [10 parts, 2 points each] Differentiate the following functions.
(a) $y=2 x^{8}$
(b) $y=\frac{4}{x^{5}}$
(c) $y=\sqrt{x}$
(d) $y=3 x^{7}-x^{2}$
(e) $y=e^{-x}$
(f) $y=4^{x}$
(g) $y=e^{x}+x^{e}$
(h) $y=\ln (x)$
(i) $y=2(1.09)^{x}+x^{1.2}+\ln (\sqrt{5})$
(j) $y=\frac{e^{3}-\ln (\ln (4.26))}{2 \pi+\sqrt{11} \ln (3)}$
8. [4 parts, 5 points each] Differentiate the following functions.
(a) $y=\left(x^{2}+6 x+1\right)^{15}$
(b) $y=\frac{x^{3}-x^{2}}{e^{x}+5}$
(c) $y=x^{2} e^{7 x}$
(d) $y=\ln (x \ln (x))$
9. [8 points] Find the equation of the line tangent to the function $f(x)=(2 x-1)^{3}$ at $x=2$.
10. Let $g(x)=(x-4)^{3}(2 x+1)^{2}$.
(a) $[6$ points $]$ Find $g^{\prime}(x)$ in factored form.
(b) [6 points] Make a sign chart for $g^{\prime}(x)$ and classify each critical point of $g(x)$ as a local minimum, a local maximum, or neither.
